# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid class TestPyramidHashOpApi(unittest.TestCase): def test_api(self): num_voc = 128 embed_dim = 64 x_shape, x_lod = [16, 10], [[3, 5, 2, 6]] x = fluid.data(name='x', shape=x_shape, dtype='int32', lod_level=1) hash_embd = fluid.contrib.search_pyramid_hash( input=x, num_emb=embed_dim, space_len=num_voc * embed_dim, pyramid_layer=4, rand_len=16, drop_out_percent=0.5, is_training=True, use_filter=False, white_list_len=6400, black_list_len=2800, seed=3, lr=0.002, param_attr=fluid.ParamAttr( name="PyramidHash_emb_0", learning_rate=0, ), param_attr_wl=fluid.ParamAttr( name="Filter", learning_rate=0, ), param_attr_bl=None, name=None, ) place = fluid.CPUPlace() x_tensor = fluid.create_lod_tensor( np.random.randint(0, num_voc, x_shape).astype('int32'), x_lod, place) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) ret = exe.run(feed={'x': x_tensor}, fetch_list=[hash_embd], return_numpy=False) if __name__ == "__main__": unittest.main()