transforms.py 35.1 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random
import cv2

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

__all__ = [
    "Compose",
    "BatchCompose",
    "Resize",
    "RandomResizedCrop",
    "CenterCropResize",
    "CenterCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "Permute",
    "Normalize",
    "GaussianNoise",
    "BrightnessTransform",
    "SaturationTransform",
    "ContrastTransform",
    "HueTransform",
    "ColorJitter",
L
LielinJiang 已提交
55 56 57 58 59
    "RandomCrop",
    "RandomErasing",
    "Pad",
    "RandomRotate",
    "Grayscale",
L
LielinJiang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
]


class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
        transforms (list): List of transforms to compose.

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

79 80
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
                print(sample[0].shape, sample[1])

    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, *data):
        for f in self.transforms:
            try:
                # multi-fileds in a sample
                if isinstance(data, Sequence):
                    data = f(*data)
                # single field in a sample, call transform directly
                else:
                    data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class BatchCompose(object):
    """Composes several batch transforms together

    Args:
        transforms (list): List of transforms to compose.
                           these transforms perform on batch data.

    Examples:
    
        .. code-block:: python

            import numpy as np
            from paddle.io import DataLoader

133 134 135
            from paddle import set_device
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, BatchCompose, Resize
L
LielinJiang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

            class NormalizeBatch(object):
                def __init__(self,
                            mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225],
                            scale=True,
                            channel_first=True):

                    self.mean = mean
                    self.std = std
                    self.scale = scale
                    self.channel_first = channel_first
                    if not (isinstance(self.mean, list) and isinstance(self.std, list) and
                            isinstance(self.scale, bool)):
                        raise TypeError("{}: input type is invalid.".format(self))
                    from functools import reduce
                    if reduce(lambda x, y: x * y, self.std) == 0:
                        raise ValueError('{}: std is invalid!'.format(self))

                def __call__(self, samples):
                    for i in range(len(samples)):
                        samples[i] = list(samples[i])
                        im = samples[i][0]
                        im = im.astype(np.float32, copy=False)
                        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
                        std = np.array(self.std)[np.newaxis, np.newaxis, :]
                        if self.scale:
                            im = im / 255.0
                        im -= mean
                        im /= std
                        if self.channel_first:
                            im = im.transpose((2, 0, 1))
                        samples[i][0] = im
                    return samples

            transform = Compose([Resize((500, 500))])
            flowers_dataset = Flowers(mode='test', transform=transform)

            device = set_device('cpu')

            collate_fn = BatchCompose([NormalizeBatch()])
            loader = DataLoader(
                        flowers_dataset,
                        batch_size=4,
                        places=device,
                        return_list=True,
                        collate_fn=collate_fn)

            for data in loader:
                # do something
                break
    """

    def __init__(self, transforms=[]):
        self.transforms = transforms

    def __call__(self, data):
        for f in self.transforms:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform batch transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e

        # sample list to batch data
        batch = list(zip(*data))

        return batch


class Resize(object):
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR.

    Examples:
    
        .. code-block:: python

            import numpy as np

225
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

            transform = Resize(size=224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, size, interpolation=cv2.INTER_LINEAR):
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        return F.resize(img, self.size, self.interpolation)


class RandomResizedCrop(object):
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
        output_size (int|list|tuple): Target size of output image, with (height, width) shape.
        scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0)
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)

    Examples:
    
        .. code-block:: python

            import numpy as np

262
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

            transform = RandomResizedCrop(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 output_size,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
                 interpolation=cv2.INTER_LINEAR):
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            self.output_size = output_size
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

    def _get_params(self, image, attempts=10):
        height, width, _ = image.shape
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                x = np.random.randint(0, width - w + 1)
                y = np.random.randint(0, height - h + 1)
                return x, y, w, h

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
        else:  # whole image
            w = width
            h = height
        x = (width - w) // 2
        y = (height - h) // 2
        return x, y, w, h

    def __call__(self, img):
        x, y, w, h = self._get_params(img)
        cropped_img = img[y:y + h, x:x + w]
        return F.resize(cropped_img, self.output_size, self.interpolation)


class CenterCropResize(object):
    """Crops to center of image with padding then scales size.

    Args:
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        crop_padding (int): Center crop with the padding. Default: 32.
        interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR.

    Examples:
    
        .. code-block:: python

            import numpy as np

339
            from paddle.vision.transforms import CenterCropResize
L
LielinJiang 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

            transform = CenterCropResize(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, size, crop_padding=32, interpolation=cv2.INTER_LINEAR):
        if isinstance(size, int):
            self.size = (size, size)
        else:
            self.size = size
        self.crop_padding = crop_padding
        self.interpolation = interpolation

    def _get_params(self, img):
        h, w = img.shape[:2]
        size = min(self.size)
        c = int(size / (size + self.crop_padding) * min((h, w)))
        x = (h + 1 - c) // 2
        y = (w + 1 - c) // 2
        return c, x, y

    def __call__(self, img):
        c, x, y = self._get_params(img)
        cropped_img = img[x:x + c, y:y + c, :]
        return F.resize(cropped_img, self.size, self.interpolation)


class CenterCrop(object):
    """Crops the given the input data at the center.

    Args:
        output_size: Target size of output image, with (height, width) shape.
    
    Examples:
    
        .. code-block:: python

            import numpy as np

383
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

            transform = CenterCrop(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, output_size):
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            self.output_size = output_size

    def _get_params(self, img):
        th, tw = self.output_size
        h, w, _ = img.shape
        assert th <= h and tw <= w, "output size is bigger than image size"
        x = int(round((w - tw) / 2.0))
        y = int(round((h - th) / 2.0))
        return x, y

    def __call__(self, img):
        x, y = self._get_params(img)
        th, tw = self.output_size
        return img[y:y + th, x:x + tw]


class RandomHorizontalFlip(object):
    """Horizontally flip the input data randomly with a given probability.

    Args:
        prob (float): Probability of the input data being flipped. Default: 0.5

    Examples:
    
        .. code-block:: python

            import numpy as np

425
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

            transform = RandomHorizontalFlip(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, img):
        if np.random.random() < self.prob:
            return F.flip(img, code=1)
        return img


class RandomVerticalFlip(object):
    """Vertically flip the input data randomly with a given probability.

    Args:
        prob (float): Probability of the input data being flipped. Default: 0.5

    Examples:
    
        .. code-block:: python

            import numpy as np

456
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

            transform = RandomVerticalFlip(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, img):
        if np.random.random() < self.prob:
            return F.flip(img, code=0)
        return img


class Normalize(object):
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (int|float|list): Sequence of means for each channel.
        std (int|float|list): Sequence of standard deviations for each channel.

    Examples:
    
        .. code-block:: python

            import numpy as np

491
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

            normalize = Normalize(mean=[0.5, 0.5, 0.5], 
                                std=[0.5, 0.5, 0.5])

            fake_img = np.random.rand(3, 500, 500).astype('float32')

            fake_img = normalize(fake_img)
            print(fake_img.shape)
    
    """

    def __init__(self, mean=0.0, std=1.0):
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
508
            std = [std, std, std]
L
LielinJiang 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

        self.mean = np.array(mean, dtype=np.float32).reshape(len(mean), 1, 1)
        self.std = np.array(std, dtype=np.float32).reshape(len(std), 1, 1)

    def __call__(self, img):
        return (img - self.mean) / self.std


class Permute(object):
    """Change input data to a target mode.
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
    Input image should be HWC mode and an instance of numpy.ndarray. 

    Args:
        mode (str): Output mode of input. Default: "CHW".
        to_rgb (bool): Convert 'bgr' image to 'rgb'. Default: True.

    Examples:
    
        .. code-block:: python

            import numpy as np

533
            from paddle.vision.transforms import Permute
L
LielinJiang 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

            transform = Permute()

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, mode="CHW", to_rgb=True):
        assert mode in [
            "CHW"
        ], "Only support 'CHW' mode, but received mode: {}".format(mode)
        self.mode = mode
        self.to_rgb = to_rgb

    def __call__(self, img):
        if self.to_rgb:
            img = img[..., ::-1]
        if self.mode == "CHW":
            return img.transpose((2, 0, 1))
        return img


class GaussianNoise(object):
    """Add random gaussian noise to the input data.
    Gaussian noise is generated with given mean and std.

    Args:
        mean (float): Gaussian mean used to generate noise.
        std (float): Gaussian standard deviation used to generate noise.
    
    Examples:
    
        .. code-block:: python

            import numpy as np

572
            from paddle.vision.transforms import GaussianNoise
L
LielinJiang 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

            transform = GaussianNoise()

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, mean=0.0, std=1.0):
        self.mean = np.array(mean, dtype=np.float32)
        self.std = np.array(std, dtype=np.float32)

    def __call__(self, img):
        dtype = img.dtype
        noise = np.random.normal(self.mean, self.std, img.shape) * 255
        img = img + noise.astype(np.float32)
        return np.clip(img, 0, 255).astype(dtype)


class BrightnessTransform(object):
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image

    Examples:
    
        .. code-block:: python

            import numpy as np

606
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

            transform = BrightnessTransform(0.4)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, value):
        if value < 0:
            raise ValueError("brightness value should be non-negative")
        self.value = value

    def __call__(self, img):
        if self.value == 0:
            return img

        dtype = img.dtype
        img = img.astype(np.float32)
        alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
        img = img * alpha
        return img.clip(0, 255).astype(dtype)


class ContrastTransform(object):
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image

    Examples:
    
        .. code-block:: python

            import numpy as np

645
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

            transform = ContrastTransform(0.4)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, value):
        if value < 0:
            raise ValueError("contrast value should be non-negative")
        self.value = value

    def __call__(self, img):
        if self.value == 0:
            return img

        dtype = img.dtype
        img = img.astype(np.float32)
        alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
        img = img * alpha + cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).mean() * (
            1 - alpha)
        return img.clip(0, 255).astype(dtype)


class SaturationTransform(object):
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image

    Examples:
    
        .. code-block:: python

            import numpy as np

685
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

            transform = SaturationTransform(0.4)

            fake_img = np.random.rand(500, 500, 3).astype('float32')
        
            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, value):
        if value < 0:
            raise ValueError("saturation value should be non-negative")
        self.value = value

    def __call__(self, img):
        if self.value == 0:
            return img

        dtype = img.dtype
        img = img.astype(np.float32)
        alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value)
        gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        gray_img = gray_img[..., np.newaxis]
        img = img * alpha + gray_img * (1 - alpha)
        return img.clip(0, 255).astype(dtype)


class HueTransform(object):
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image

    Examples:
    
        .. code-block:: python

            import numpy as np

726
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

            transform = HueTransform(0.4)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, value):
        if value < 0 or value > 0.5:
            raise ValueError("hue value should be in [0.0, 0.5]")
        self.value = value

    def __call__(self, img):
        if self.value == 0:
            return img

        dtype = img.dtype
        img = img.astype(np.uint8)
        hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
        h, s, v = cv2.split(hsv_img)

        alpha = np.random.uniform(-self.value, self.value)
        h = h.astype(np.uint8)
        # uint8 addition take cares of rotation across boundaries
        with np.errstate(over="ignore"):
            h += np.uint8(alpha * 255)
        hsv_img = cv2.merge([h, s, v])
        return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype)


class ColorJitter(object):
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
        brightness: How much to jitter brightness.
L
LielinJiang 已提交
764
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
L
LielinJiang 已提交
765
        contrast: How much to jitter contrast.
L
LielinJiang 已提交
766
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
L
LielinJiang 已提交
767
        saturation: How much to jitter saturation.
L
LielinJiang 已提交
768
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
L
LielinJiang 已提交
769
        hue: How much to jitter hue.
L
LielinJiang 已提交
770
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
L
LielinJiang 已提交
771 772 773 774 775 776 777

    Examples:
    
        .. code-block:: python

            import numpy as np

778
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

            transform = ColorJitter(0.4)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        transforms = []
        if brightness != 0:
            transforms.append(BrightnessTransform(brightness))
        if contrast != 0:
            transforms.append(ContrastTransform(contrast))
        if saturation != 0:
            transforms.append(SaturationTransform(saturation))
        if hue != 0:
            transforms.append(HueTransform(hue))

        random.shuffle(transforms)
        self.transforms = Compose(transforms)

    def __call__(self, img):
        return self.transforms(img)
L
LielinJiang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824


class RandomCrop(object):
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
    
    Examples:
    
        .. code-block:: python

            import numpy as np

825
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

            transform = RandomCrop(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, size, padding=0, pad_if_needed=False):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed

    def _get_params(self, img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (numpy.ndarray): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.

        """
        h, w, _ = img.shape
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        try:
            i = random.randint(0, h - th)
        except ValueError:
            i = random.randint(h - th, 0)
        try:
            j = random.randint(0, w - tw)
        except ValueError:
            j = random.randint(w - tw, 0)
        return i, j, th, tw

    def __call__(self, img):
        """

        Args:
            img (numpy.ndarray): Image to be cropped.
        Returns:
            numpy.ndarray: Cropped image.

        """
        if self.padding > 0:
            img = F.pad(img, self.padding)

        # pad the width if needed
        if self.pad_if_needed and img.shape[1] < self.size[1]:
            img = F.pad(img, (int((1 + self.size[1] - img.shape[1]) / 2), 0))
        # pad the height if needed
        if self.pad_if_needed and img.shape[0] < self.size[0]:
            img = F.pad(img, (0, int((1 + self.size[0] - img.shape[0]) / 2)))

        i, j, h, w = self._get_params(img, self.size)

        return img[i:i + h, j:j + w]


class RandomErasing(object):
    """Randomly selects a rectangle region in an image and erases its pixels.
    ``Random Erasing Data Augmentation`` by Zhong et al.
    See https://arxiv.org/pdf/1708.04896.pdf

    Args:
         prob (float): probability that the random erasing operation will be performed.
         scale (tuple): range of proportion of erased area against input image. Should be (min, max).
         ratio (float): range of aspect ratio of erased area.
         value (float|list|tuple): erasing value. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively. Default: 0. 

    Examples:
    
        .. code-block:: python

            import numpy as np

912
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997

            transform = RandomCrop(224)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 prob=0.5,
                 scale=(0.02, 0.4),
                 ratio=0.3,
                 value=[0., 0., 0.]):
        assert isinstance(value, (
            float, Sequence
        )), "Expected type of value in [float, list, tupue], but got {}".format(
            type(value))
        assert scale[0] <= scale[1], "scale range should be of kind (min, max)!"

        if isinstance(value, float):
            self.value = [value, value, value]
        else:
            self.value = value

        self.p = prob
        self.scale = scale
        self.ratio = ratio

    def __call__(self, img):
        if random.uniform(0, 1) > self.p:
            return img

        for _ in range(100):
            area = img.shape[0] * img.shape[1]

            target_area = random.uniform(self.scale[0], self.scale[1]) * area
            aspect_ratio = random.uniform(self.ratio, 1 / self.ratio)

            h = int(round(math.sqrt(target_area * aspect_ratio)))
            w = int(round(math.sqrt(target_area / aspect_ratio)))

            if w < img.shape[1] and h < img.shape[0]:
                x1 = random.randint(0, img.shape[0] - h)
                y1 = random.randint(0, img.shape[1] - w)

                if len(img.shape) == 3 and img.shape[2] == 3:
                    img[x1:x1 + h, y1:y1 + w, 0] = self.value[0]
                    img[x1:x1 + h, y1:y1 + w, 1] = self.value[1]
                    img[x1:x1 + h, y1:y1 + w, 2] = self.value[2]
                else:
                    img[x1:x1 + h, y1:y1 + w] = self.value[1]
                return img

        return img


class Pad(object):
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.

    Examples:
    
        .. code-block:: python

            import numpy as np

998
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

            transform = Pad(2)

            fake_img = np.random.rand(500, 500, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, padding, fill=0, padding_mode='constant'):
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
        if isinstance(padding,
                      collections.Sequence) and len(padding) not in [2, 4]:
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def __call__(self, img):
        """
        Args:
            img (numpy.ndarray): Image to be padded.
        Returns:
            numpy.ndarray: Padded image.
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


class RandomRotate(object):
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
        interpolation (int|optional): Interpolation mode of resize. Default: cv2.INTER_LINEAR.
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    
    Examples:
    
        .. code-block:: python

            import numpy as np

1054
            from paddle.vision.transforms import RandomRotate
L
LielinJiang 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

            transform = RandomRotate(90)

            fake_img = np.random.rand(500, 400, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self,
                 degrees,
                 interpolation=cv2.INTER_LINEAR,
                 expand=False,
                 center=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.interpolation = interpolation
        self.expand = expand
        self.center = center

    def _get_params(self, degrees):
        """Get parameters for ``rotate`` for a random rotation.
        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
        angle = random.uniform(degrees[0], degrees[1])

        return angle

    def __call__(self, img):
        """
            img (np.ndarray): Image to be rotated.
        Returns:
            np.ndarray: Rotated image.
        """

        angle = self._get_params(self.degrees)

        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center)


class Grayscale(object):
    """Converts image to grayscale.

    Args:
        output_channels (int): (1 or 3) number of channels desired for output image
    Returns:
        CV Image: Grayscale version of the input.
        - If output_channels == 1 : returned image is single channel
        - If output_channels == 3 : returned image is 3 channel with r == g == b

    Examples:
    
        .. code-block:: python

            import numpy as np

1122
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

            transform = Grayscale()

            fake_img = np.random.rand(500, 400, 3).astype('float32')

            fake_img = transform(fake_img)
            print(fake_img.shape)
    """

    def __init__(self, output_channels=1):
        self.output_channels = output_channels

    def __call__(self, img):
        """
        Args:
            img (numpy.ndarray): Image to be converted to grayscale.
        Returns:
            numpy.ndarray: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.output_channels)