pybind.cc 13.1 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Z
zchen0211 已提交
22
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
24
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
25
#include "paddle/platform/enforce.h"
Q
qijun 已提交
26
#include "paddle/platform/place.h"
27
#include "paddle/pybind/tensor_py.h"
28
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
29 30 31 32
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

33 34
namespace py = pybind11;

35
USE_OP(add);
36
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
37
USE_OP(sgd);
Q
qijun 已提交
38
USE_OP(mul);
39
USE_OP(elementwise_mul);
L
liaogang 已提交
40
USE_OP(mean);
Q
qijun 已提交
41 42 43
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
44
USE_OP(fill_zeros_like);
45
USE_NO_KERNEL_OP(recurrent);
Z
cond op  
zchen0211 已提交
46
USE_NO_KERNEL_OP(cond);
47
USE_OP(gaussian_random);
Y
Yu Yang 已提交
48
USE_OP(uniform_random);
49
USE_OP(lookup_table);
Y
Yu Yang 已提交
50
USE_OP(scale);
51
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
52
USE_OP(minus);
X
Xinghai Sun 已提交
53
USE_OP(cos_sim);
Z
zchen0211 已提交
54
USE_CPU_ONLY_OP(gather);
W
wanghaoshuang 已提交
55
USE_OP(pad);
Z
zchen0211 已提交
56
USE_CPU_ONLY_OP(scatter);
57
USE_CPU_ONLY_OP(concat);
武毅 已提交
58
USE_OP(top_k);
59
USE_OP(squared_l2_distance);
60
USE_OP(sum);
Y
Yibing Liu 已提交
61
USE_OP(reshape);
62

63 64
namespace paddle {
namespace framework {
D
dongzhihong 已提交
65 66

using Tensor = framework::Tensor;
67 68
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
69

70 71 72 73 74
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
75 76 77 78 79 80 81 82
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

83
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
84
  py::module m("core", "C++ core of PaddlePaddle");
85

86 87 88
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
89
      .def("get_dims",
90
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
91
      .def("set_dims",
Q
qijun 已提交
92
           [](Tensor &self, const std::vector<int64_t> &dim) {
93
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_float",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_float",
Y
Yu Yang 已提交
100
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
102 103
           })
      .def("alloc_int",
Y
Yu Yang 已提交
104
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
106
           })
Q
qijun 已提交
107
      .def("alloc_int",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<int>(place);
Q
qijun 已提交
110
           })
Y
Yu Yang 已提交
111 112
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
113
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
114 115
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
116
#endif
117
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
118
      .def("set_float_element",
119
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
120
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
121 122
             self.data<float>()[offset] = f;
           })
123
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
124
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
125 126
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
127

128
  py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
D
dangqingqing 已提交
129

130
The tensor and LoD info should be created before creating the LoDTensor, then
D
dangqingqing 已提交
131 132 133
call the set_tensor and set_lod functions to set them.

)DOC")
134 135 136 137 138 139 140 141 142 143 144 145 146
      .def("__init__",
           [](LoDTensor &instance,
              const std::vector<std::vector<size_t>> &lod,
              Tensor *t) {
#ifdef PADDLE_ONLY_CPU
             new (&instance) LoDTensor(lod, t);
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             new (&instance) LoDTensor(new_lod, t);
#endif
           })
D
dangqingqing 已提交
147
      .def("set_tensor",
148
           [](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
D
dangqingqing 已提交
149
      .def("set_lod",
150
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
151
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
152
             self.set_lod(lod);
153 154 155 156 157 158
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
159
           })
160 161
      .def("tensor",
           [](LoDTensor &self) -> Tensor & { return self.tensor(); },
D
dangqingqing 已提交
162
           py::return_value_policy::reference)
163 164
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
165
        return self.lod();
166 167 168 169 170 171 172 173 174 175 176 177 178 179
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
180 181
      });

182
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
183 184 185

All parameter, weight, gradient are variables in Paddle.
)DOC")
186
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
187
      .def("set_int",
188 189
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
190
      .def("get_tensor",
191
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
192
           py::return_value_policy::reference)
D
dangqingqing 已提交
193
      .def("get_lod_tensor",
194 195
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
196 197
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
198
      .def("get_net",
D
dongzhihong 已提交
199 200
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
201
           },
Y
Yu Yang 已提交
202
           py::return_value_policy::reference);
203

204
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
205
      .def("new_var",
206
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
207 208
             return self.NewVar(name);
           },
209
           py::return_value_policy::reference)
210
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
211
      .def(py::init<>())
212 213
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
214
           py::return_value_policy::reference)
215
      .def("drop_kids", &Scope::DropKids);
216

Y
Yu Yang 已提交
217 218
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
219 220
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
221 222 223 224

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
225
      std::string str;
Y
Yu Yang 已提交
226
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
227
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
228 229
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
230 231
    return ret_values;
  });
232 233 234
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
235 236
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
237
  // clang-format off
Y
Yu Yang 已提交
238
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
239 240
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
241
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
242 243 244 245 246
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
247
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
248
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
249
#else
Q
qijun 已提交
250
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
251
#endif
Q
qijun 已提交
252
                  });
Q
qijun 已提交
253
  // clang-format on
Q
qijun 已提交
254

255 256 257
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
258

259 260 261
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
262

Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
288 289
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
290
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
291
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
292 293 294 295
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
296

Y
Yu Yang 已提交
297 298 299 300 301 302 303
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
304 305 306 307
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
308 309 310 311
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
312

Y
Yan Chunwei 已提交
313
  // recurrent_op
Y
Yu Yang 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
327 328 329
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
330

Z
cond op  
zchen0211 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    auto cond_op = OpRegistry::CreateOp(desc);
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

353 354
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
355 356
  m.def("is_compile_gpu", IsCompileGPU);

357
  return m.ptr();
L
Luo Tao 已提交
358
}
359 360
}  // namespace framework
}  // namespace paddle