split_op_plugin.cu 10.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hjchen2 已提交
15 16
#include <cuda_fp16.h>
#include <algorithm>
N
nhzlx 已提交
17
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
N
nhzlx 已提交
18
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
19 20 21 22

namespace paddle {
namespace inference {
namespace tensorrt {
23
namespace plugin {
N
nhzlx 已提交
24

N
nhzlx 已提交
25 26 27 28 29
SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
  return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);

H
hjchen2 已提交
30
template <typename T>
31 32 33 34 35 36 37 38 39 40
__device__ int upper_bound(T const* vals, int n, T const& key) {
  int i = 0;
  while (n > 0) {
    int m = n / 2;
    int j = i + m;
    if (!(key < vals[j])) {
      i = j + 1;
      n -= m + 1;
    } else {
      n = m;
H
hjchen2 已提交
41 42
    }
  }
43
  return i;
H
hjchen2 已提交
44 45
}

46 47
nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
48 49 50 51 52 53 54 55 56 57 58
  PADDLE_ENFORCE_EQ(num_inputs, 1,
                    platform::errors::InvalidArgument(
                        "Invalid number of inputs of split TRT plugin. "
                        "Expected 1, received %d.",
                        num_inputs));
  PADDLE_ENFORCE_LT(
      index, this->getNbOutputs(),
      platform::errors::InvalidArgument(
          "Index of output should be less than the total number of outputs in "
          "split TensorRT plugin. Received index = %d >= total outputs = %d",
          index, this->getNbOutputs()));
59 60

  nvinfer1::Dims output_dims = input_dims[0];
61
  output_dims.d[axis_] = output_length_.at(index);
N
nhzlx 已提交
62 63 64 65
  return output_dims;
}

int SplitPlugin::initialize() {
66 67 68 69 70
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS,
                    platform::errors::InvalidArgument(
                        "Axis dimension exceeds max dimension in TensorRT. "
                        "Received axis = %d > MAX_DIMS = %d",
                        axis_, nvinfer1::Dims::MAX_DIMS));
H
hjchen2 已提交
71 72 73 74 75 76 77 78 79 80 81
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
N
nhzlx 已提交
82 83
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
H
hjchen2 已提交
84 85 86
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
87
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
N
nhzlx 已提交
88
  }
89
  axis_shape_ = dims.d[axis_];
H
hjchen2 已提交
90 91 92 93 94 95
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

96 97
// The following part of the code refers to onnx-tensorrt
// https://github.com/onnx/onnx-tensorrt/blob/master/Split.cu
H
hjchen2 已提交
98
template <typename T>
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
__global__ void split_kernel(int nsegment,
                             int const* __restrict__ segment_offsets,
                             T const* __restrict__ idata, T* const* odatas,
                             int inner_cols, int axis_shape, int outer_rows) {
  int x0 = threadIdx.x + blockIdx.x * blockDim.x;
  int src_y0 = threadIdx.y + blockIdx.y * blockDim.y;
  int z0 = threadIdx.z + blockIdx.z * blockDim.z;
  for (int z = z0; z < outer_rows; z += blockDim.z * gridDim.z) {
    for (int src_y = src_y0; src_y < axis_shape;
         src_y += blockDim.y * gridDim.y) {
      for (int x = x0; x < inner_cols; x += blockDim.x * gridDim.x) {
        int segment = upper_bound(segment_offsets, nsegment, src_y) - 1;
        int dst_y = src_y - segment_offsets[segment];
        int dst_ny = segment_offsets[segment + 1] - segment_offsets[segment];
        odatas[segment][x + inner_cols * (dst_y + dst_ny * z)] =
            idata[x + inner_cols * (src_y + axis_shape * z)];
      }
    }
N
nhzlx 已提交
117 118 119 120 121
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
122 123
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets_[0]);
H
hjchen2 已提交
124
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
125 126
  float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
  float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
127 128 129 130 131 132
  PADDLE_ENFORCE_CUDA_SUCCESS(
      cudaMemcpyAsync(output_ptrs, h_odatas,
                      d_output_ptrs_.size() * sizeof(float*),
                      cudaMemcpyHostToDevice, stream),
      platform::errors::External(
          "CUDA Memcpy failed during split plugin run."));
133 134 135 136 137 138 139 140 141 142 143

  int outer_rows = outer_rows_ * batchSize;

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols_ - 1) / block.x + 1, 65535u),
            std::min((axis_shape_ - 1) / block.y + 1, 65535u),
            std::min((outer_rows_ - 1) / block.z + 1, 65535u));

  split_kernel<<<grid, block, 0, stream>>>(
      d_segment_offsets_.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
      inner_cols_, axis_shape_, outer_rows);
N
nhzlx 已提交
144 145 146
  return cudaGetLastError() != cudaSuccess;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int SplitPluginDynamic::initialize() { return 0; }

size_t SplitPluginDynamic::getSerializationSize() const { return 0; }

void SplitPluginDynamic::serialize(void* buffer) const {}

nvinfer1::DimsExprs SplitPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder) {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));
  PADDLE_ENFORCE_LT(output_index, output_length_.size(),
                    platform::errors::InvalidArgument(
                        "When GetOutputDimensions, the index(%d) should not "
                        "greater the num(%d) of the outpus.",
                        output_index, output_length_.size()));

  nvinfer1::DimsExprs output_dims = inputs[0];
  output_dims.d[axis_] = expr_builder.constant(output_length_.at(output_index));

  return output_dims;
}

bool SplitPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
178
                  "The input of split plugin should not be nullptr."));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc& in = in_out[pos];
  if (pos == 0) {
#ifdef SUPPORTS_CUDA_FP16
    return (in.type == nvinfer1::DataType::kFLOAT ||
            in.type == nvinfer1::DataType::kHALF) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
#else
    return (in.type == nvinfer1::DataType::kFLOAT) &&
           (in.format == nvinfer1::TensorFormat::kLINEAR);
#endif
  }
  const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType SplitPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType* input_types, int nb_inputs) const {
  return input_types[0];
}

int SplitPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
                                const nvinfer1::PluginTensorDesc* output_desc,
                                const void* const* inputs, void* const* outputs,
                                void* workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  int outer_rows = 1;
  int inner_cols = 1;
  // with batch
  for (int i = 0; i < axis_; i++) {
    outer_rows *= input_dims.d[i];
  }

  for (int i = axis_ + 1; i < input_dims.nbDims; i++) {
    inner_cols *= input_dims.d[i];
  }

  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); i++) {
    segment_offsets.push_back(segment_offsets.back() + output_length_[i]);
  }
  int axis_shape = input_dims.d[axis_];
  thrust::device_vector<int> d_segment_offsets = segment_offsets;
  const int* d_segment_offsets_ptr =
      thrust::raw_pointer_cast(&d_segment_offsets[0]);

  dim3 block(32, 16);
  dim3 grid(std::min((inner_cols - 1) / block.x + 1, 65535u),
            std::min((axis_shape - 1) / block.y + 1, 65535u),
            std::min((outer_rows - 1) / block.z + 1, 65535u));

  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
    thrust::device_vector<float*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const float* input_ptr = static_cast<const float*>(inputs[0]);
    float* const* h_odatas = reinterpret_cast<float* const*>(outputs);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpyAsync(output_ptrs, h_odatas,
                        d_output_ptrs.size() * sizeof(float*),
                        cudaMemcpyHostToDevice, stream),
        platform::errors::External(
            "CUDA Memcpy failed during split plugin run."));

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
  } else if (input_type == nvinfer1::DataType::kHALF) {
#ifdef SUPPORTS_CUDA_FP16
    thrust::device_vector<half*> d_output_ptrs;
    d_output_ptrs.resize(this->getNbOutputs(), nullptr);

    const half* input_ptr = static_cast<const half*>(inputs[0]);
    half* const* h_odatas = reinterpret_cast<half* const*>(outputs);
    half** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs[0]);

    PADDLE_ENFORCE_CUDA_SUCCESS(
        cudaMemcpyAsync(output_ptrs, h_odatas,
                        d_output_ptrs.size() * sizeof(half*),
                        cudaMemcpyHostToDevice, stream),
        platform::errors::External(
            "CUDA Memcpy failed during split plugin run."));

    split_kernel<<<grid, block, 0, stream>>>(
        d_segment_offsets.size(), d_segment_offsets_ptr, input_ptr, output_ptrs,
        inner_cols, axis_shape, outer_rows);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "The cuda archs you specific should greater than 600."));
#endif
  }
  return cudaGetLastError() != cudaSuccess;
}
#endif

285 286 287 288
}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle