split_op_plugin.cu 7.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hjchen2 已提交
15 16
#include <cuda_fp16.h>
#include <algorithm>
N
nhzlx 已提交
17
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
N
nhzlx 已提交
18
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
19 20 21 22

namespace paddle {
namespace inference {
namespace tensorrt {
23
namespace plugin {
N
nhzlx 已提交
24

N
nhzlx 已提交
25 26 27 28 29
SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
  return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);

H
hjchen2 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
// copied from operators::math::SplitFunctor
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int* out_cols,
                            int out_cols_size, T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  int curr_segment = 0;
  int curr_offset = out_cols[0];
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int curr_col_offset = out_cols[curr_segment + 1];
    while (curr_col_offset <= tid_x) {
      curr_offset = curr_col_offset;
      ++curr_segment;
      curr_col_offset = out_cols[curr_segment + 1];
    }

    int local_col = tid_x - curr_offset;
    int segment_width = curr_col_offset - curr_offset;
    T* output_ptr = outputs_data[curr_segment];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * segment_width + local_col] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int fixed_out_col,
                            T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int split = tid_x / fixed_out_col;
    int in_offset = tid_x - split * fixed_out_col;
    T* output_ptr = outputs_data[split];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * fixed_out_col + in_offset] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

76 77 78 79 80 81
nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
  PADDLE_ENFORCE_EQ(num_inputs, 1);
  PADDLE_ENFORCE_LT(index, this->getNbOutputs());

  nvinfer1::Dims output_dims = input_dims[0];
82
  output_dims.d[axis_] = output_length_.at(index);
N
nhzlx 已提交
83 84 85 86
  return output_dims;
}

int SplitPlugin::initialize() {
87
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
H
hjchen2 已提交
88 89 90 91 92 93 94 95 96 97 98
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
N
nhzlx 已提交
99 100
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
H
hjchen2 已提交
101 102 103 104 105
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
    segment_offsets.push_back(segment_offsets.back() +
                              output_length_[i] * inner_cols_);
N
nhzlx 已提交
106
  }
H
hjchen2 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  inner_cols_ *= dims.d[axis_];
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

template <typename T>
inline void Split(cudaStream_t stream, const bool same_shape,
                  const int outer_rows, const int inner_cols,
                  const std::vector<int>& segment_offsets,
                  const int* d_segment_offsets, const T* input, T** outputs) {
  const int kThreadsPerBlock = 1024;
  const int kMaxBlocks = 65535;
  int block_cols = kThreadsPerBlock;
  if (inner_cols < kThreadsPerBlock) {  // block_cols is aligned by 32.
    block_cols = ((inner_cols + 31) >> 5) << 5;
N
nhzlx 已提交
124
  }
H
hjchen2 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  int block_rows = kThreadsPerBlock / block_cols;
  dim3 block_size = dim3(block_cols, block_rows, 1);

  int grid_cols =
      std::min((inner_cols + block_cols - 1) / block_cols, kMaxBlocks);
  int grid_rows =
      std::min(kMaxBlocks / grid_cols, std::max(outer_rows / block_rows, 1));
  dim3 grid_size = dim3(grid_cols, grid_rows, 1);

  if (same_shape) {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, segment_offsets[1], outputs);
  } else {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, d_segment_offsets,
        static_cast<int>(segment_offsets.size()), outputs);
N
nhzlx 已提交
141 142 143 144 145
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
H
hjchen2 已提交
146
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
H
hjchen2 已提交
147 148
  if (((batchSize == 1 && axis_ == 0) || axis_ == -1) &&
      this->getNbOutputs() < 10) {
H
hjchen2 已提交
149 150
    float** output_ptrs = reinterpret_cast<float**>(outputs);
    int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT)
H
hjchen2 已提交
151 152
                             ? sizeof(float)
                             : sizeof(__half);
H
hjchen2 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    for (int i = 0; i < this->getNbOutputs(); ++i) {
      PADDLE_ENFORCE(
          cudaMemcpyAsync(
              output_ptrs[i], input_ptr + segment_offsets_[i],
              (segment_offsets_[i + 1] - segment_offsets_[i]) * data_type_size,
              cudaMemcpyDeviceToDevice, stream) == cudaSuccess);
    }
  } else {
    outer_rows_ *= batchSize;
    const int* d_segment_offsets_ptr =
        thrust::raw_pointer_cast(&d_segment_offsets_[0]);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
    PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, outputs,
                                   this->getNbOutputs() * sizeof(float*),
                                   cudaMemcpyHostToDevice,
                                   stream) == cudaSuccess);
    if (this->getDataType() == nvinfer1::DataType::kFLOAT) {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, input_ptr, output_ptrs);
    } else {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, (__half*)input_ptr,  // NOLINT
            (__half**)output_ptrs);                     // NOLINT
176 177
    }
  }
N
nhzlx 已提交
178 179 180
  return cudaGetLastError() != cudaSuccess;
}

181 182 183 184
}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle