test_cast_op.py 4.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17 18
import unittest
import numpy as np
19 20

import paddle
21
import paddle.fluid.core as core
22 23
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yiqun Liu 已提交
24
from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16
H
hong 已提交
25
from paddle.fluid.framework import _test_eager_guard
Y
Yu Yang 已提交
26 27


Y
Yiqun Liu 已提交
28
class TestCastOpFp32ToFp64(OpTest):
29

Y
Yu Yang 已提交
30 31 32 33 34
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
35 36
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
47
class TestCastOpFp16ToFp32(OpTest):
48

K
Kexin Zhao 已提交
49 50
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
51
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
52 53 54 55 56 57
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
58
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
59 60

    def test_check_output(self):
K
Kexin Zhao 已提交
61
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
62 63


Y
Yiqun Liu 已提交
64
class TestCastOpFp32ToFp16(OpTest):
65

K
Kexin Zhao 已提交
66 67 68 69 70 71 72 73 74
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
75
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
76 77

    def test_check_output(self):
K
Kexin Zhao 已提交
78
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
79 80


Y
Yiqun Liu 已提交
81
class TestCastOpBf16ToFp32(OpTest):
82

Y
Yiqun Liu 已提交
83 84 85 86 87 88 89 90 91
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
92
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
93 94 95 96 97 98

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
99

Y
Yiqun Liu 已提交
100 101 102 103 104 105 106 107 108
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.BF16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
109
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
110 111 112 113 114

    def test_check_output(self):
        self.check_output()


115
class TestCastOpError(unittest.TestCase):
116

117 118 119
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
120 121
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
122 123 124
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


H
hong 已提交
125
class TestCastOpEager(unittest.TestCase):
126

H
hong 已提交
127 128 129 130 131 132 133
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
            with _test_eager_guard():
                x = paddle.ones([2, 2], dtype="float16")
                x.stop_gradient = False
                out = paddle.cast(x, "float32")
                self.assertTrue(
134 135
                    np.array_equal(out,
                                   np.ones([2, 2]).astype("float32")))
H
hong 已提交
136 137 138 139 140
                out.backward()
                self.assertTrue(np.array_equal(x.gradient(), x.numpy()))
                self.assertTrue(x.gradient().dtype == np.float16)


Y
Yu Yang 已提交
141
if __name__ == '__main__':
142
    paddle.enable_static()
Y
Yu Yang 已提交
143
    unittest.main()