test_cast_op.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import op_test
Y
Yu Yang 已提交
18 19
import unittest
import numpy as np
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yu Yang 已提交
23 24


K
Kexin Zhao 已提交
25
class TestCastOp1(op_test.OpTest):
Y
Yu Yang 已提交
26 27 28 29 30
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
31 32
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
33 34 35 36 37 38 39 40 41 42
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


K
Kexin Zhao 已提交
43 44 45
class TestCastOp2(op_test.OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
46
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
47 48 49 50 51 52 53 54
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
55
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
56 57


K
Kexin Zhao 已提交
58
class TestCastOp3(op_test.OpTest):
K
Kexin Zhao 已提交
59 60 61 62 63 64 65 66 67 68 69
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'

    def test_check_output(self):
K
Kexin Zhao 已提交
70
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
71 72


73
class TestCastOpError(unittest.TestCase):
74 75 76 77 78 79 80
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')
            # The input dtype of cast_op must be bool, float16, float32, float64, int32, int64, uint8.
81
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='int16')
82
            self.assertRaises(TypeError, fluid.layers.cast, x2, 'int32')
83 84 85 86 87 88

            def test_dtype_type():
                x4 = fluid.layers.data(name='x4', shape=[4], dtype='int32')
                output = fluid.layers.cast(x=x4, dtype='int16')

            self.assertRaises(TypeError, test_dtype_type)
89 90


Y
Yu Yang 已提交
91 92
if __name__ == '__main__':
    unittest.main()