sharding_optimizer.py 68.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17 18
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op
20 21 22 23 24
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
25
from .sharding.offload_helper import OffloadHelper
26 27
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
28 29 30
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
from paddle.fluid import layers

31
import logging
32 33 34 35 36 37
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
    fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
38 39
from functools import reduce

40
__all__ = []
41 42 43


class ShardingOptimizer(MetaOptimizerBase):
44 45
    """Sharding Optimizer."""

46 47 48 49 50 51
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
52 53
            "LarsOptimizer",
            "LambOptimizer",
54 55
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
56 57 58 59 60 61 62 63 64 65 66
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
67 68 69 70
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
71 72 73 74 75 76 77 78 79 80 81 82 83 84

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
85
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
86

W
WangXi 已提交
87 88 89 90 91 92 93 94 95 96 97
    def _get_sharding_segment_strategy(self):
        """ get
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
98

W
WangXi 已提交
99 100
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
101
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
W
WangXi 已提交
102 103
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
104 105 106 107 108 109 110
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
W
WangXi 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
                    str(segment_strategy)))
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
        """ get
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
124

125
        # parallelism
W
WangXi 已提交
126 127 128 129 130 131 132
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
133 134
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
135 136 137 138 139 140
        if pp_degree > 1:
            assert strategy.pipeline is True

        assert global_world_size == mp_degree * sharding_degree * pp_degree * dp_degree, \
            "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, pp_degree, dp_degree)
141

J
JZ-LIANG 已提交
142
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
143
        if sharding_configs["hybrid_dp"]:
144
            logger.warning(
W
WangXi 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                "[hybrid_dp] API setting is deprecated. Now when "
                "dp_degree >= 2, its will be in hybrid dp mode automatically")
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
        """ get
        self.hybrid_dp_mode
        self.gradient_merge_mode
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
174 175 176
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
177
                dp_mode = "pp_hybrid_dp"
178
            else:
W
WangXi 已提交
179 180 181 182
                assert self.sharding_degree > 1, \
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, " \
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                dp_mode = "sharding_hybrid_dp"
183

184
        # gradient merge
W
WangXi 已提交
185 186
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
187
        if self.pp_degree <= 1:
W
WangXi 已提交
188
            gm_mode = "sharding_gm"
189 190
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
191 192 193
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
        if gm_acc_step > 1:
194
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
W
WangXi 已提交
195
                gm_mode, gm_acc_step))
196

W
WangXi 已提交
197 198 199
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
200 201

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
202
        self.pp_allreduce_in_optimize = sharding_configs[
203
            "pp_allreduce_in_optimize"]
204

W
WangXi 已提交
205 206 207 208
    def _inner_opt_minimize(self, loss, startup_program, parameter_list,
                            no_grad_set):
        pipeline_configs = self.user_defined_strategy.pipeline_configs

209 210 211
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
212 213 214 215

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
W
WangXi 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
            }
233 234
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
235 236 237

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
W
WangXi 已提交
238
            assert self.pp_degree == len(program_list)
239 240 241
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
242 243 244

        if startup_program is None:
            startup_program = default_startup_program()
245 246 247

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
248 249
            print("pp_rank:", self.pp_rank)
            main_program = program_list[self.pp_rank]
250 251 252 253 254 255 256 257 258 259 260
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

261 262 263 264
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

265 266 267 268 269
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
270
        return optimize_ops, params_grads
271

W
WangXi 已提交
272 273 274 275 276
    def _apply_sharding_pass(self, params_grads):
        if self.sharding_degree == 1: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
277

W
WangXi 已提交
278 279
        # step1: build shard
        self._build_shard(params_grads)
280

W
WangXi 已提交
281 282
        # step2: split_program
        self._split_program(main_block)
283

W
WangXi 已提交
284 285 286 287
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
288

W
WangXi 已提交
289 290 291
        # step4: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
292

W
WangXi 已提交
293 294
    def _insert_allreduce_for_pp(self):
        if self.pp_degree == 1: return
295

W
WangXi 已提交
296
        strategy = self.user_defined_strategy
297 298
        fp16_allreduce = strategy.fp16_allreduce

W
WangXi 已提交
299 300 301 302 303 304 305 306 307 308 309 310
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
311 312
                        main_block._remove_op(idx)

W
WangXi 已提交
313 314 315 316 317 318 319 320 321
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
322 323 324
            main_block,
            fp16_allreduce=fp16_allreduce,
            user_defined_strategy=strategy)
325 326 327 328

        len_of_ops = len(main_block.ops)
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
329
        if self.pp_allreduce_in_optimize:
330 331 332 333 334 335
            logger.info("Pipeline Persistable grad is {}".format(
                accumulated_grad_names))
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
336 337 338 339 340 341
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
342 343 344 345 346 347 348
                use_calc_stream=True,
                rank=self.sharding_rank)

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

W
WangXi 已提交
349
        if self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
350 351 352 353 354 355 356 357 358 359 360 361
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
                user_defined_strategy=strategy)
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
362

W
WangXi 已提交
363 364
    def _adapt_amp_clip_without_sharding(self):
        if self.sharding_degree > 1: return
365 366
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
367

W
WangXi 已提交
368 369 370 371 372
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # FIXME(wangxi): mp should prune duplicated param_grads when calc
        # amp inf_var & clip global_norm_var
373

374 375 376 377 378
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
379

W
WangXi 已提交
380 381 382 383 384 385 386 387
        gradientclip_helper = GradientClipHelper(None)
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id])

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
388 389 390 391
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
            insert_scale_loss_grad_ops(main_block, scale=1.0 / global_dp_degree)
392

393 394
        main_block._sync_with_cpp()

W
WangXi 已提交
395 396 397 398 399 400 401 402 403 404
    def _apply_optimize_offload_pass(self):
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
405
            logger.info("Sharding with optimize offload !")
406 407
            offload_helper = OffloadHelper()
            offload_helper.offload(main_block, startup_block)
408
            # The optimize_cast is already included in offload_fp32param
409
            offload_helper.offload_fp32param(main_block, startup_block)
410 411 412 413 414 415
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
            offload_helper = OffloadHelper()
            offload_helper.cast_fp32param_in_optimize(main_block, startup_block)
416

W
WangXi 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
            loss, startup_program, parameter_list, no_grad_set)

        self._init_comm()

        self._apply_sharding_pass(params_grads)

        self._insert_allreduce_for_pp()

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

459
        # apply optimize offload or optimize cast
W
WangXi 已提交
460 461
        self._apply_optimize_offload_pass()

462
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
463
        self._sharding_gradient_merge()
464 465 466 467 468 469

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
470

W
WangXi 已提交
471 472 473
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
474

W
WangXi 已提交
475
        self._dump_program_for_debug()
476

477 478 479
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
480 481
        return optimize_ops, params_grads

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            pp_group_endpoints,
            pp_rank,
            ring_id,
            False,
            sync=False)

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
        send_to_next_pair = (self.pp_rank,
                             (self.pp_rank + 1) % self.pp_degree)  # 2->3
        recv_from_next_pair = ((self.pp_rank + 1) % self.pp_degree,
                               self.pp_rank)  # 3->2
        recv_from_prev_pair = ((self.pp_rank - 1 + self.pp_degree) %
                               self.pp_degree, self.pp_rank)  # 1->2
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 1)  # 3->0 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 2)  # 0->3 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
569 570 571 572 573 574 575 576 577
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            self.pp_group_endpoints,
            self.pp_rank,
            self.pp_ring_id,
            False,
            sync=False)

578 579 580 581 582 583 584 585 586 587 588 589
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

590
    def _init_comm(self):
591
        # sync var
592 593
        startup_block = self._startup_program.global_block()

594
        # mp ring
595 596 597 598 599 600 601 602 603 604
        if self.mp_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False)

605
        # sharding ring
606 607 608 609 610 611 612 613 614 615
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

616 617
        # pp ring
        if self.pp_degree > 1:
618
            self._init_pipeline_comm(startup_block)
619 620

        # pure dp ring
621
        if self.dp_degree > 1:
622
            self._collective_helper._init_communicator(
623 624 625 626 627 628 629
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False)
630

631 632
        startup_block._sync_with_cpp()

633
    def _build_shard(self, params_grads):
634 635
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
636
        self._shard.setup(params_grads, self.sharding_rank,
637
                          self.sharding_degree)
638 639 640 641 642 643

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
644 645 646
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
647 648
            self._collective_helper._wait(current_endpoint, endpoints)

649 650 651 652 653 654 655 656
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

657 658 659 660 661
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
662 663

        var2broadcast_time = dict()
664 665 666 667 668
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
                                input_name = input_name[:input_name.find(
                                    ".cast_fp16@GRAD")]

                        if input_name in self._backward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            self._forward_remain_anchors.remove(output_name)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
                                                                      broadcast_var_base_name.
                                                                      find(
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

730 731 732 733 734 735 736
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            assert (reduced_grad not in
                                    self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
753 754 755 756 757 758 759 760 761 762 763

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
764 765 766 767 768 769 770 771 772 773 774 775 776

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
            for varname in sorted(
                    var2broadcast_time, key=var2broadcast_time.get,
                    reverse=True):
777
                logger.info("Sharding broadcast: [{}] times [{}]".format(
778 779
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
780 781
                logger.info("segment [{}] :".format(idx_))
                logger.info("start op: [{}]  [{}]".format(block.ops[
782 783 784
                    self._segments[idx_]._start_idx].desc.type(), block.ops[
                        self._segments[idx_]._start_idx].desc.input_arg_names(
                        )))
785
                logger.info("end   op: [{}]  [{}]".format(block.ops[
786 787
                    self._segments[idx_]._end_idx].desc.type(), block.ops[
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
788 789 790 791 792 793
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
794 795 796 797 798 799

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
800 801 802
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
803 804

        # FIXME(wangxi): mp should prune duplicated param_grads
805 806 807
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
808 809 810 811
        FP16Utils.prune_fp16(
            block, self._shard, self._reduced_grads_to_param,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])

812
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
813 814 815 816
        gradientclip_helper = GradientClipHelper(None)
        gradientclip_helper.prune_gradient_clip(
            block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
817 818 819 820 821 822 823 824 825 826 827

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

828
        # prune optimizer state and param
829 830 831 832 833 834 835 836 837 838 839 840 841 842
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
843 844 845 846 847 848 849
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
881 882
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
883 884 885
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

886 887 888 889 890 891 892 893 894 895
        # NOTE (JZ-LIANG) revise and unify logic here
        # sharding support fp16_allreduce logic            
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
896 897 898 899 900
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
901 902
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
903 904 905

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
906 907 908
        """
        if len(self._segments) < 1:
            return
909
        # sharding
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

926
        if self._segments[-1]._allreduce_vars:
927 928
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
929 930 931
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
932 933
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
934 935 936 937 938 939
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
940
            # gradient merge 
941
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
942 943 944 945 946 947
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

948
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
949
                                 self.sharding_ring_id,
950
                                 self._segments[-1]._allreduce_vars)
951
            # allreduce --> reduce 
952 953 954 955 956 957 958 959
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
997 998
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

999 1000 1001
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
1019
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1020 1021 1022 1023 1024
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1041
            # gradient merge
1042
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1043 1044 1045 1046 1047
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(), segment._start_idx,
                    shard_allredue_vars, self._shard)

1048 1049
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1050

1051
            # step6: add all_reduce ops
1052
            # dp
1053 1054 1055
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1056 1057 1058 1059 1060 1061
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1062 1063 1064
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
1065
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1066 1067 1068
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
1069
            # allreduce --> reduce 
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            # TODO temp change
            if len(allreduce_vars) > 0:
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False)
1080 1081 1082 1083

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1084 1085 1086
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1087
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1088
                                 self.sharding_ring_id,
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1129

1130
    def _build_groups(self):
1131 1132
        """
        pre-assign ring ids
1133 1134 1135 1136
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1137 1138
            pp: 4
            pp-pair: >= 20
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        if one parallelism is not enable: -1
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp        
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding)
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1166
            ]
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

        # sharding 
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
            # sharding + ...    
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1208 1209
        # pp
        if self.pp_degree > 1:
1210 1211 1212
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
                self.pp_group_endpoints.append(self.global_endpoints[
                    pp_first_stage_idx + pp_stage_offset * i])
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1229 1230
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1231 1232 1233 1234
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1235 1236 1237 1238 1239 1240 1241
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
        # sharding-hybrid-dp as one senario of outter-pure-dp 
        assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
            self.mp_degree, self.sharding_degree, self.pp_degree,
            self.dp_degree, self.global_word_size)
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        if self.dp_degree > 1:
            self.dp_ring_id = 2
            self.dp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree * self.pp_degree)
            dp_first_rank_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree * self.pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree * self.pp_degree)
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
                self.dp_group_endpoints.append(self.global_endpoints[
                    dp_first_rank_idx + dp_offset * i])
            assert self.current_endpoint in self.dp_group_endpoints
1255
            logger.info("Hybrid DP mode turn on !")
1256 1257 1258
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1259
            self.dp_group_endpoints = []
1260

1261
        # global group
1262 1263
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1264
        self.global_ring_id = 3
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1283
            self.sharding_group_endpoints))
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1297
            self.dp_group_endpoints))
1298 1299
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1300 1301

        return
1302

W
WangXi 已提交
1303
    def _initialization_broadcast(self):
1304 1305 1306 1307
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
W
WangXi 已提交
1308 1309 1310 1311 1312
        if not self.hybrid_dp:
            return

        startup_block = self._startup_program.global_block()

1313
        params = []
1314
        for param in startup_block.iter_parameters():
1315
            params.append(param)
1316
            startup_block.append_op(
1317 1318 1319 1320 1321 1322 1323 1324
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
1325
        startup_block.append_op(
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
                inputs={'X': grad_name,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                })

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=False,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1),
                       OP_ROLE_KEY: OpRole.Optimize})

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var,
                        'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False
                })

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize})
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
            amp 
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

        # allreduce grad@gradientmerge  
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False)
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
1553
    def _sharding_gradient_merge(self):
1554 1555 1556 1557 1558 1559
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
W
WangXi 已提交
1560 1561 1562 1563
        if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
            return

        main_block = self._main_program.global_block()
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
            outputs={'Out': [],
                     'Scope': [step_scope]},
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })