sharding_optimizer.py 65.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17 18
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op
20 21 22 23 24
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
25
from .sharding.offload_helper import OffloadHelper
26 27
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
28 29 30
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
from paddle.fluid import layers

31
import logging
32 33 34 35 36 37
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
    fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
38 39
from functools import reduce

40
__all__ = []
41 42 43


class ShardingOptimizer(MetaOptimizerBase):
44 45
    """Sharding Optimizer."""

46 47 48 49 50 51
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
52 53
            "LarsOptimizer",
            "LambOptimizer",
54 55
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
56 57 58 59 60 61 62 63 64 65 66
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
67 68 69 70
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
71 72 73 74 75 76 77 78 79 80 81 82 83 84

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
85
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
86 87 88 89 90 91

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
92 93 94 95
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        # segment
        self._sharding_segment_strategy = str(
            self.user_defined_strategy.sharding_configs[
                "sharding_segment_strategy"])
        if self._sharding_segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = self.user_defined_strategy.sharding_configs[
                "segment_broadcast_MB"]
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
        elif self._sharding_segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = self.user_defined_strategy.sharding_configs[
                "segment_anchors"]
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
                    str(self._sharding_segment_strategy)))

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        # parallelism
        self.sharding_degree = int(self.user_defined_strategy.sharding_configs[
            "sharding_degree"])
        assert self.sharding_degree > 0, "sharding degree must be larger than zero"
        self.mp_degree = int(self.user_defined_strategy.sharding_configs[
            "mp_degree"])
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
        self.pp_degree = int(self.user_defined_strategy.sharding_configs[
            "pp_degree"])
        if self.pp_degree > 1:
            assert self.user_defined_strategy.pipeline == True

        self.dp_degree = int(self.user_defined_strategy.sharding_configs[
            'dp_degree'])
        assert self.role_maker._worker_num(
        ) == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
            self.role_maker._worker_num(),
            self.mp_degree,
            self.sharding_degree,
            self.pp_degree,
            self.dp_degree, )

J
JZ-LIANG 已提交
140 141
        # FIXME (JZ-LIANG) deprecated hybrid_dp
        if self.user_defined_strategy.sharding_configs["hybrid_dp"]:
142
            logger.warning(
J
JZ-LIANG 已提交
143 144 145 146 147 148 149 150
                "[hybrid_dp] API setting is deprecated. Now when dp_degree >= 2, its will be in hybrid dp mode automatically"
            )
            assert self.dp_degree >= 1
        if self.dp_degree > 1:
            self.hybrid_dp = True
        else:
            self.hybrid_dp = False

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        # NOTE (JZ-LIANG) 
        # there 2 kind of modes for gradient-merge and hybrid-dp in mixed parallism [sharding] and [pipeline].
        # we distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment to overlap with bw calc, conduct every micro step 
        # pipeline: communication accross nodes, and therefore should insert in update segemnt, conduct just once per global step        
        self.hybrid_dp_mode = None
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            assert self.dp_degree > 1, "hybrid dp is on, but dp degree is [{}]".format(
                self.dp_degree)
            if self.pp_degree > 1:
                self.hybrid_dp_mode = "pp_hybrid_dp"
            else:
                assert self.sharding_degree > 1, "by now we only support five kind of hybrid dp: sharding_hybrid_dp, mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                self.hybrid_dp_mode = "sharding_hybrid_dp"

167 168 169 170
        # gradient merge
        self._gradient_merge_acc_step = int(
            self.user_defined_strategy.sharding_configs[
                "gradient_merge_acc_step"])
171 172 173 174 175 176 177 178 179
        self.gradient_merge_mode = None
        if self.pp_degree <= 1:
            self.gradient_merge_mode = "sharding_gm"
            self._grad2merged_grad = dict()
        else:
            self.gradient_merge_mode = "pp_gm"
            self._gradient_merge_acc_step = self.user_defined_strategy.pipeline_configs[
                'accumulate_steps']
        if self._gradient_merge_acc_step > 1:
180
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
181 182 183 184 185 186 187 188 189
                self.gradient_merge_mode, self._gradient_merge_acc_step))

        # optimize offload
        self.optimize_offload = self.user_defined_strategy.sharding_configs[
            "optimize_offload"]

        # this feature is design for ascend, and should NOT be used in GPU training
        self.pp_allreduce_in_optimize = self.user_defined_strategy.sharding_configs[
            "pp_allreduce_in_optimize"]
190

191 192 193
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
194 195 196 197

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
198 199 200

            strategy = self.user_defined_strategy
            self.schedule_mode = strategy.pipeline_configs['schedule_mode']
201 202
            self.pp_rank_ = self.role_maker._worker_index() // (
                self.sharding_degree * self.mp_degree) % self.pp_degree
203 204 205 206 207 208 209 210

            pipeline_opt = dict()
            pipeline_opt['schedule_mode'] = self.schedule_mode
            pipeline_opt['micro_batch_size'] = strategy.pipeline_configs[
                'micro_batch_size']
            pipeline_opt['local_rank'] = self.pp_rank_
            pipeline_opt['global_rank'] = self.role_maker._worker_index()
            pipeline_opt['use_sharding'] = True
211
            # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
212 213 214 215 216 217 218 219
            pipeline_opt['ring_id'] = 20
            pipeline_opt['global_ring_id'] = 3
            pipeline_opt['mp_degree'] = self.mp_degree
            pipeline_opt['mp_rank'] = self.role_maker._worker_index(
            ) % self.mp_degree

            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
220 221 222 223 224 225 226

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
            self.pp_degree = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
227 228 229

        if startup_program is None:
            startup_program = default_startup_program()
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", self.pp_rank_)
            main_program = program_list[self.pp_rank_]
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block

248 249 250 251
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

252 253 254 255 256
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

257 258 259
        # step0: _init_comm
        self._init_comm()

260
        if self.sharding_degree > 1:
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            # step1: build shard
            self._build_shard(params_grads)

            # step2: split_program
            self._split_program(main_block)

            # step3: add broadcast and reduce ops
            self._add_broadcast_allreduce(main_block)
            main_block._sync_with_cpp()
            startup_block._sync_with_cpp()

            main_block._sync_with_cpp()

            # step4: remove unneeded ops and vars from block
            self._prune_main_program(main_block)
            self._prune_startup_program(startup_block)

        if self.pp_degree > 1:
            # sharding-pp related logic
            # pp_optimizer._rename_gradient_var_name(main_block)
            # crop ops
            if self.sharding_degree > 1:
                for idx, op in reversed(list(enumerate(main_block.ops))):
                    if is_update_op(op):
                        op_role_var = op.attr('op_role_var')
                        param_name = op_role_var[0]
                        if not self._shard.has_param(param_name):
                            main_block._remove_op(idx)

                for idx, op in reversed(list(enumerate(main_block.ops))):
                    if op.type != 'cast': continue
                    in_name = op.input_arg_names[0]
                    if in_name not in self._params: continue
                    #if self._shard.has_param(param_name): continue
                    if in_name not in main_block.vars:
                        main_block._remove_op(idx)

            accumulated_grad_names = pp_optimizer._accumulate_gradients(
                main_block)
            # accumulated_grad_names = sorted(accumulated_grad_names)
            if self.pp_allreduce_in_optimize:
                print("persistable FP32 grad: ")
                print(accumulated_grad_names)
                first_optimize_op_index = get_first_check_finite_and_unscale_op_idx(
B
Baibaifan 已提交
306
                    main_block, raise_error=self.user_defined_strategy.amp)
307 308 309 310 311 312 313 314 315 316
                insert_reduce_ops(
                    main_block,
                    first_optimize_op_index,
                    self.sharding_ring_id,
                    accumulated_grad_names,
                    self._shard,
                    core.op_proto_and_checker_maker.OpRole.Optimize,
                    use_calc_stream=True)
            if self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
                first_optimize_op_index = get_first_check_finite_and_unscale_op_idx(
B
Baibaifan 已提交
317 318 319 320 321 322 323 324
                    main_block, raise_error=self.user_defined_strategy.amp)
                if first_optimize_op_index >= 0:
                    insert_allreduce_ops(
                        main_block,
                        first_optimize_op_index,
                        self.dp_ring_id,
                        accumulated_grad_names,
                        core.op_proto_and_checker_maker.OpRole.Optimize,
325 326
                        use_calc_stream=True,
                        user_defined_strategy=self.user_defined_strategy)
327 328 329 330

        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
        if self.sharding_degree <= 1:
331 332 333
            # FIXME(wangxi): mp should prune duplicated param_grads when calc
            # amp inf_var & clip global_norm_var

334
            # amp
335 336
            FP16Utils.sync_amp_check_nan_inf(
                main_block, [self.mp_ring_id, self.pp_ring_id])
337 338

            # clip
339
            gradientclip_helper = GradientClipHelper(None)
340
            gradientclip_helper.sync_global_norm(
341
                main_block, [self.mp_ring_id, self.pp_ring_id])
342

343 344 345 346 347
        # step6: loss div dp_degree 
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
            insert_scale_loss_grad_ops(main_block, scale=1.0 / global_dp_degree)
348

349 350
        main_block._sync_with_cpp()

351 352 353 354
        # TODO(wangxi): add optimize offload
        # opt offload should be enable while gradient merge is enable && acc_step is quite large (e.g. >> 100) 
        # sync its memcpy could not be overlap with calc, otherwise it will slower down training severely. 
        if self.optimize_offload:
355
            logger.info("Sharding with optimize offload !")
356 357 358 359 360 361
            offload_helper = OffloadHelper()
            offload_helper.offload(main_block, startup_block)
            offload_helper.offload_fp32param(main_block, startup_block)

        # step6: (optional) sharding gradient merge
        if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
362 363 364 365 366 367 368
            self._sharding_gradient_merge(main_block)

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
369 370 371 372 373 374 375 376 377 378 379 380 381

        if self.hybrid_dp:
            # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp 
            # init param broadcast should be called after startup pruning             
            self._initialization_broadcast(startup_block)

        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

382 383 384
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
385 386
        return optimize_ops, params_grads

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            pp_group_endpoints,
            pp_rank,
            ring_id,
            False,
            sync=False)

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
        send_to_next_pair = (self.pp_rank,
                             (self.pp_rank + 1) % self.pp_degree)  # 2->3
        recv_from_next_pair = ((self.pp_rank + 1) % self.pp_degree,
                               self.pp_rank)  # 3->2
        recv_from_prev_pair = ((self.pp_rank - 1 + self.pp_degree) %
                               self.pp_degree, self.pp_rank)  # 1->2
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 1)  # 3->0 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 2)  # 0->3 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
        assert self.pp_rank_ == self.pp_rank, "pp rank for pp opt [{}], pp rank for sharding opt [{}]".format(
            self.pp_rank_, self.pp_rank)

477 478 479 480 481 482 483 484 485
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            self.pp_group_endpoints,
            self.pp_rank,
            self.pp_ring_id,
            False,
            sync=False)

486 487 488 489 490 491 492 493 494 495 496 497
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

498
    def _init_comm(self):
499

500
        # config sharding & dp groups
501
        self._build_groups()
502

503
        # sync var
504 505 506 507 508 509 510
        startup_block = self._startup_program.global_block()
        self.startup_prog_sync_var = startup_block.create_var(
            name="startup_prog_sync_var",
            shape=[1],
            dtype=core.VarDesc.VarType.INT32,
            persistable=False)

511
        # mp ring
512 513 514 515 516 517 518 519 520 521
        if self.mp_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False)

522
        # sharding ring
523 524 525 526 527 528 529 530 531 532
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

533 534
        # pp ring
        if self.pp_degree > 1:
535
            self._init_pipeline_comm(startup_block)
536 537

        # pure dp ring
538
        if self.dp_degree > 1:
539
            self._collective_helper._init_communicator(
540 541 542 543 544 545 546
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False)
547

548 549
        startup_block._sync_with_cpp()

550
    def _build_shard(self, params_grads):
551 552
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
553
        self._shard.setup(params_grads, self.sharding_rank,
554
                          self.sharding_degree)
555 556 557 558 559 560

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
561 562 563
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
564 565
            self._collective_helper._wait(current_endpoint, endpoints)

566 567 568 569 570 571 572 573
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

574 575 576 577 578
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
579 580

        var2broadcast_time = dict()
581 582 583 584 585
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
                                input_name = input_name[:input_name.find(
                                    ".cast_fp16@GRAD")]

                        if input_name in self._backward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            self._forward_remain_anchors.remove(output_name)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
                                                                      broadcast_var_base_name.
                                                                      find(
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

647 648 649 650 651 652 653
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            assert (reduced_grad not in
                                    self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
670 671 672 673 674 675 676 677 678 679 680

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
681 682 683 684 685 686 687 688 689 690 691 692 693

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
            for varname in sorted(
                    var2broadcast_time, key=var2broadcast_time.get,
                    reverse=True):
694
                logger.info("Sharding broadcast: [{}] times [{}]".format(
695 696
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
697 698
                logger.info("segment [{}] :".format(idx_))
                logger.info("start op: [{}]  [{}]".format(block.ops[
699 700 701
                    self._segments[idx_]._start_idx].desc.type(), block.ops[
                        self._segments[idx_]._start_idx].desc.input_arg_names(
                        )))
702
                logger.info("end   op: [{}]  [{}]".format(block.ops[
703 704
                    self._segments[idx_]._end_idx].desc.type(), block.ops[
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
705 706 707 708 709 710
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
711 712 713 714 715 716

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
717 718 719
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
720 721

        # FIXME(wangxi): mp should prune duplicated param_grads
722 723 724
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
725 726 727 728
        FP16Utils.prune_fp16(
            block, self._shard, self._reduced_grads_to_param,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])

729
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
730 731 732 733
        gradientclip_helper = GradientClipHelper(None)
        gradientclip_helper.prune_gradient_clip(
            block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
734 735 736 737 738 739 740 741 742 743 744

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

745
        # prune optimizer state and param
746 747 748 749 750 751 752 753 754 755 756 757 758 759
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
760 761 762 763 764 765 766
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
798 799
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
800 801 802
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

803 804 805 806 807 808 809 810 811 812
        # NOTE (JZ-LIANG) revise and unify logic here
        # sharding support fp16_allreduce logic            
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
813 814 815 816 817
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
818 819
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
820 821 822

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
823 824 825
        """
        if len(self._segments) < 1:
            return
826
        # sharding
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

843
        if self._segments[-1]._allreduce_vars:
844 845
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
846 847 848
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
849 850
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
851 852 853 854 855 856
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
857
            # gradient merge 
858
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
859 860 861 862 863 864
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

865
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
866
                                 self.sharding_ring_id,
867
                                 self._segments[-1]._allreduce_vars)
868
            # allreduce --> reduce 
869 870 871 872 873 874 875 876
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
914 915
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

916 917 918
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
936
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
937 938 939 940 941
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
958
            # gradient merge
959
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
960 961 962 963 964
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(), segment._start_idx,
                    shard_allredue_vars, self._shard)

965 966
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
967

968
            # step6: add all_reduce ops
969
            # dp
970 971 972
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
973 974 975 976 977 978
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
979 980 981
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
982
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
983 984 985
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
986
            # allreduce --> reduce 
987 988 989 990 991 992 993 994 995 996
            # TODO temp change
            if len(allreduce_vars) > 0:
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False)
997 998 999 1000

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1001 1002 1003
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1004
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1005
                                 self.sharding_ring_id,
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1046

1047
    def _build_groups(self):
1048 1049
        """
        pre-assign ring ids
1050 1051 1052 1053 1054
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
            pp: >= 20
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        if one parallelism is not enable: -1
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp        
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding)
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1082
            ]
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

        # sharding 
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
            # sharding + ...    
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1124 1125
        # pp
        if self.pp_degree > 1:
1126 1127 1128
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
                self.pp_group_endpoints.append(self.global_endpoints[
                    pp_first_stage_idx + pp_stage_offset * i])
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1145 1146
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1147 1148 1149 1150
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1151 1152 1153 1154 1155 1156 1157
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
        # sharding-hybrid-dp as one senario of outter-pure-dp 
        assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
            self.mp_degree, self.sharding_degree, self.pp_degree,
            self.dp_degree, self.global_word_size)
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        if self.dp_degree > 1:
            self.dp_ring_id = 2
            self.dp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree * self.pp_degree)
            dp_first_rank_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree * self.pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree * self.pp_degree)
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
                self.dp_group_endpoints.append(self.global_endpoints[
                    dp_first_rank_idx + dp_offset * i])
            assert self.current_endpoint in self.dp_group_endpoints
1171
            logger.info("Hybrid DP mode turn on !")
1172 1173 1174
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1175
            self.dp_group_endpoints = []
1176

1177
        # global group
1178 1179
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1180
        self.global_ring_id = 3
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1199
            self.sharding_group_endpoints))
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1213
            self.dp_group_endpoints))
1214 1215
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1216 1217

        return
1218

1219
    def _initialization_broadcast(self, startup_block):
1220 1221 1222 1223 1224
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        params = []
1225
        for param in startup_block.iter_parameters():
1226
            params.append(param)
1227
            startup_block.append_op(
1228 1229 1230 1231 1232 1233 1234 1235
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
1236
        startup_block.append_op(
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
                inputs={'X': grad_name,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                })

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=False,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1),
                       OP_ROLE_KEY: OpRole.Optimize})

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var,
                        'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False
                })

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize})
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
            amp 
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

        # allreduce grad@gradientmerge  
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False)
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

    def _sharding_gradient_merge(self, main_block):
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
            outputs={'Out': [],
                     'Scope': [step_scope]},
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })