matmul_mkldnn_op.cc 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

W
wanghuancoder 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

27 28 29 30 31 32
namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using framework::DataLayout;
33
using framework::ExecutionContext;
34 35
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
36 37
using platform::MKLDNNGetDataType;
using platform::to_void_cast;
38 39
using Tensor = framework::Tensor;

40 41 42 43 44
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

45 46 47 48 49
template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static framework::DDim RowMatrixDimsFromVector(const framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static framework::DDim ColumnMatrixDimsFromVector(
    const framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
68 69 70 71
    if (!IsInitialized()) {
      CreateMemories(ctx);
      CreatePrimitive(ctx);
      SetInitialized();
72
    }
73
    Execute(ctx);
74 75 76 77 78
    SetOutputFormat(ctx);
  }

 private:
  struct MatMulDims {
79 80
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));

    PADDLE_ENFORCE_EQ(
        in_rank, axis_size,
        platform::errors::InvalidArgument("The input dimension's size "
                                          "should be equal to the axis's size. "
                                          "But received dimension is %d, "
                                          "axis's size is %d",
                                          in_rank, axis_size));

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

  std::pair<math::MatDescriptor, memory::dims> GetInputDimsAndStrides(
      const ExecutionContext& ctx, std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
    math::MatDescriptor mat_dim =
        math::CreateMatrixDescriptor(MatrixDimsFromVector(new_dims), 0,
                                     ctx.Attr<bool>("transpose_" + input_name));

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

164 165 166 167 168 169 170 171 172 173
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
174 175 176
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
    }
177 178
  }

179
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
180
    math::MatDescriptor x_mat_dims;
181
    memory::dims strides_x;
182 183
    std::tie(x_mat_dims, strides_x) = GetInputDimsAndStrides(ctx, "X");
    math::MatDescriptor y_mat_dims;
184
    memory::dims strides_y;
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    std::tie(y_mat_dims, strides_y) = GetInputDimsAndStrides(ctx, "Y");

    auto x_mat_bs = x_mat_dims.batch_size_;
    auto y_mat_bs = y_mat_dims.batch_size_;
    PADDLE_ENFORCE_EQ(x_mat_bs > 0 && y_mat_bs > 0 && x_mat_bs != y_mat_bs,
                      false, platform::errors::InvalidArgument(
                                 "If batch sizes of X and Y are positive,"
                                 "they have to be equal."));
    memory::dim out_mat_bs =
        x_mat_bs || y_mat_bs ? std::max(x_mat_bs, y_mat_bs) : 1;

    const memory::dim M = x_mat_dims.height_;
    const memory::dim N = y_mat_dims.width_;
    const memory::dim K = x_mat_dims.width_;

    // Find total batch size of the data
    const memory::dim x_bs = (x_mat_bs) ? x_mat_bs : 1;
    const memory::dim y_bs = (y_mat_bs) ? y_mat_bs : 1;
    const memory::dim total_bs = std::max(x_bs, y_bs);

    // Find batch size for oneDNN primitive
    memory::dim onednn_bs = std::min(x_bs, y_bs);

    // Find the number of times the oneDNN primitive has to be executed
    execute_loop_steps_ = total_bs / onednn_bs;
    if (execute_loop_steps_ > 1) {
      x_mat_bs /= execute_loop_steps_;
      y_mat_bs /= execute_loop_steps_;
      out_mat_bs /= execute_loop_steps_;
    }
215

216 217 218 219 220 221 222 223 224 225
    // Take original format batch size into account
    if (out_mat_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
      auto x_orig_bs = ctx.Input<Tensor>("X")->dims()[0];
      auto y_orig_bs = ctx.Input<Tensor>("Y")->dims()[0];
      auto orig_bs = x_mat_bs > y_mat_bs ? x_orig_bs : y_orig_bs;
      execute_loop_steps_ *= orig_bs;
      onednn_bs /= orig_bs;
      x_mat_bs /= orig_bs;
      y_mat_bs /= orig_bs;
      out_mat_bs /= orig_bs;
226 227
    }

228 229 230 231 232 233 234 235 236
    // Set dimensions for the oneDNN memories
    memory::dims x_dims = {onednn_bs, M, K};
    memory::dims y_dims = {onednn_bs, K, N};
    memory::dims out_dims = {onednn_bs, M, N};

    // Find data offsets for each oneDNN primitive execution step
    x_offset_ = x_mat_bs * M * K * sizeof(XT);
    y_offset_ = y_mat_bs * K * N * sizeof(YT);
    out_offset_ = out_mat_bs * M * N * sizeof(OT);
237 238

    // Translate transA and transB
239 240 241 242 243 244
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
245 246
    memory::dims out_strides = memory::dims{M * N, N, 1};

247
    CorrectStridesWhenFloatOutputFused(ctx, N, out_mat_bs, &out_strides);
248 249

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
250 251 252 253 254
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);

255 256 257 258
    x_mem_ = CreateMemory<XT>(matmul_dims.x_dims, matmul_dims.x_strides,
                              ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ = CreateMemory<YT>(matmul_dims.y_dims, matmul_dims.y_strides,
                              ctx.Input<Tensor>("Y")->data<YT>());
259
    out_mem_ = CreateMemory<OT>(
260
        matmul_dims.out_dims, matmul_dims.out_strides,
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

287
  void Execute(const ExecutionContext& ctx) {
288
    dnnl::stream stream(engine_);
289 290 291 292 293 294 295
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    void* x_ptr = to_void_cast(x->data<XT>());
    void* y_ptr = to_void_cast(y->data<YT>());
    void* out_ptr = to_void_cast(out->mutable_data<OT>(ctx.GetPlace()));
    for (uint16_t i = 0; i < execute_loop_steps_; i++) {
296 297 298 299 300 301 302 303
      x_mem_.set_data_handle(x_ptr);
      y_mem_.set_data_handle(y_ptr);
      out_mem_.set_data_handle(out_ptr);
      matmul_prim_.execute(stream, {
                                       {MKLDNN_ARG_SRC, x_mem_},
                                       {MKLDNN_ARG_WEIGHTS, y_mem_},
                                       {MKLDNN_ARG_DST, out_mem_},
                                   });
304 305 306
      x_ptr = static_cast<char*>(x_ptr) + x_offset_;
      y_ptr = static_cast<char*>(y_ptr) + y_offset_;
      out_ptr = static_cast<char*>(out_ptr) + out_offset_;
307
    }
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
    using platform::MKLDNNFormatForSize;
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
        MKLDNNFormatForSize(out->dims().size(), MKLDNNMemoryFormat::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
326 327 328 329 330 331
  struct memory_offsets {
    size_t x_offset;
    size_t y_offset;
    size_t out_offset;
  };

332 333 334 335 336
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
337 338 339
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
340
  uint16_t execute_loop_steps_;
341 342 343 344 345 346 347 348
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
349
  const auto batch_size = ctx.Input<Tensor>("X")->dims()[0];
350 351
  std::string key = platform::CreateKey(dev_ctx, batch_size, out_name);
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
368
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
369 370
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
371
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
372
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
373 374 375
  } else if (is_bfloat16) {
    GetPrimitiveFactory<XT, YT, paddle::platform::bfloat16>(ctx)
        ->CreateAndExecute(ctx);
376 377 378 379 380 381 382 383 384 385 386 387
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
class DNNLMatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (ctx.HasAttr("head_number")) {
388 389 390 391 392 393
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
          platform::errors::Unimplemented(
              "DNNL matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
394
    }
395
    platform::MKLDNNDeviceContext::tls().log_lib_version();
396 397 398 399 400 401 402 403
    ExecuteMatMul<T, T>(ctx);
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
404 405 406
                   ops::DNNLMatMulKernel<float>,
                   ops::DNNLMatMulKernel<paddle::platform::bfloat16>,
                   ops::DNNLMatMulKernel<int8_t>,
407
                   ops::DNNLMatMulKernel<uint8_t>);