conv_bn_fuse_pass.cc 16.4 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
16
#include <algorithm>
S
Sylwester Fraczek 已提交
17 18 19 20
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
P
Pei Yang 已提交
21
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
55
                                LoDTensor* eltwise_y_in_tensor,   //
56
                                float epsilon, const std::string& conv_type) {
57 58 59 60 61 62 63
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
64
  // Re-compute bias of conv2d from BN
65 66 67 68 69 70
  PADDLE_ENFORCE_EQ(
      eltwise_y_in_tensor->dims(), bn_bias_tensor.dims(),
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
71 72 73 74 75 76

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

77 78 79 80 81 82 83 84 85
  ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
                                       scale_tensor->numel(), 1);
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
      variance_tensor->numel(), 1);
  ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
                                      mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
                                         bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
86

87 88 89 90 91 92 93 94
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;

  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
      eltwise_y_in_tensor->numel(), 1);
95

96 97
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
S
Sylwester Fraczek 已提交
98 99

  // Re-compute weight of conv2d from BN
100 101
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
102 103 104 105 106 107 108 109 110 111 112 113 114 115
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
    auto weights_shape_2d = flatten_to_2d(weights_shape, 1);
116

117 118
    EigenMatrixArrayMap weights_array_2d(weights_data, weights_shape_2d[0],
                                         weights_shape_2d[1]);
119

120 121
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
122 123
}

124
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
125 126
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
127
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
128 129

  auto* scope = param_scope();
130 131
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
132 133 134 135 136 137

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
138
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
139
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
140
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
141 142 143 144

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
145
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
146 147 148 149

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
150 151
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
152 153
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
154 155 156
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
157
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
158 159 160
      return;
    }

161 162 163 164
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
165 166 167
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
        patterns::PDNodeName(name_scope_, "eltwise_y_in"));
168 169 170
    eltwise_y_in_desc.SetShape(framework::vectorize(bn_bias_tensor->dims()));
    eltwise_y_in_desc.SetDataType(bn_bias_tensor->type());
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
171
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
172 173 174 175 176 177 178 179 180 181
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
182 183
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
184
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
185
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
186
                               epsilon, conv_type());
S
Sylwester Fraczek 已提交
187

W
Wojciech Uss 已提交
188 189 190 191 192 193 194 195 196
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
      bool has_bias = std::find(input_names.begin(), input_names.end(),
                                "Bias") != input_names.end();
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
197 198 199
        PADDLE_ENFORCE_EQ(
            conv_bias_names.size(), 1UL,
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
200 201
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
202 203 204 205 206 207 208
        PADDLE_ENFORCE_EQ(
            conv_bias_tensor->dims(), eltwise_y_in_tensor->dims(),
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
209 210 211 212 213 214 215 216 217 218 219 220

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
      GraphSafeRemoveNodes(
221
          graph,
W
Wojciech Uss 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
          {conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
           bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

237 238 239
      GraphSafeRemoveNodes(graph, {bn_scale, bn_bias, bn_mean, bn_variance,
                                   batch_norm, bn_mean_out, bn_variance_out,
                                   bn_saved_mean, bn_saved_variance});
W
Wojciech Uss 已提交
240 241 242 243 244 245

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
246 247
  };

248
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
249 250 251 252

  AddStatis(found_conv_bn_count);
}

253
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
254 255
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
256
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
257 258

  auto* scope = param_scope();
259 260
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
261 262 263 264 265 266

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
267
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
268
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
269
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
270 271 272 273

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
274
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
297 298
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
      eltwise_y_in_desc.SetShape(
          framework::vectorize(eltwise_y_in_tensor->dims()));
      eltwise_y_in_desc.SetDataType(eltwise_y_in_tensor->type());
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
      TensorCopy(*eltwise_y_in_tensor, platform::CPUPlace(),
                 eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor_ex,
                                 epsilon, conv_type());
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor,
                                 epsilon, conv_type());
    }
S
Sylwester Fraczek 已提交
341 342 343 344 345 346

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));

    GraphSafeRemoveNodes(
347
        graph,
S
Sylwester Fraczek 已提交
348 349 350 351 352 353 354 355
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

356
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
357 358 359 360 361 362 363 364 365 366 367

  AddStatis(found_conv_bn_count);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
368 369 370 371
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
372 373 374 375
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
376 377 378 379 380 381 382 383 384 385 386
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("conv2d", 0)
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("conv2d", 0)
            .EQ("elementwise_add", 0)
            .EQ("batch_norm", 0));