// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h" #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/operators/math/cpu_vec.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { namespace ir { #define GET_CONV_BN_NODES(pattern_name) \ /* OPERATORS */ \ GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \ /* CONV inputs */ \ GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \ /* CONV outputs */ \ GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \ /* BN inputs */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \ /* BN outputs */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name) void recompute_bias_and_weights(const Scope* scope, ir::Node* conv_weight, // const ir::Node& bn_scale, // const LoDTensor& bn_bias_tensor, // const ir::Node& bn_mean, // const ir::Node& bn_variance, // LoDTensor* eltwise_y_in_tensor, // float epsilon, const std::string& conv_type) { using EigenVectorArrayMap = Eigen::Map>; using ConstEigenVectorArrayMap = Eigen::Map>; using EigenMatrixArrayMap = Eigen::Map< Eigen::Array>; // Re-compute bias of conv2d from BN PADDLE_ENFORCE_EQ( eltwise_y_in_tensor->dims(), bn_bias_tensor.dims(), platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch " "norm bias(%d) must have same dims.", eltwise_y_in_tensor->dims().size(), bn_bias_tensor.dims().size())); auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable(); auto* variance_tensor = scope->FindVar(bn_variance.Name())->GetMutable(); auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable(); ConstEigenVectorArrayMap scale_array(scale_tensor->data(), scale_tensor->numel(), 1); EigenVectorArrayMap variance_array( variance_tensor->mutable_data(platform::CPUPlace()), variance_tensor->numel(), 1); ConstEigenVectorArrayMap mean_array(mean_tensor->data(), mean_tensor->numel(), 1); ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data(), bn_bias_tensor.numel(), 1); // variance will not be used anymore, so make it std_array and then tmp_array variance_array += epsilon; variance_array = variance_array.sqrt(); variance_array = scale_array / variance_array; EigenVectorArrayMap eltwise_y_in_array( eltwise_y_in_tensor->mutable_data(platform::CPUPlace()), eltwise_y_in_tensor->numel(), 1); eltwise_y_in_array = ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array; // Re-compute weight of conv2d from BN auto* weights = scope->FindVar(conv_weight->Name())->GetMutable(); auto weights_shape = weights->dims(); auto weights_data = weights->mutable_data(platform::CPUPlace()); // ConvTranspose weights are in IOHW format if (conv_type == "conv2d_transpose") { int kernel_size = weights_shape[2] * weights_shape[3]; for (int i = 0; i < weights->numel();) { for (int j = 0; j < weights_shape[1]; ++j) { for (int k = 0; k < kernel_size; ++k, ++i) { weights_data[i] *= variance_array[j]; } } } } else { auto weights_shape_2d = flatten_to_2d(weights_shape, 1); EigenMatrixArrayMap weights_array_2d(weights_data, weights_shape_2d[0], weights_shape_2d[1]); weights_array_2d.colwise() *= variance_array; } } void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const { PADDLE_ENFORCE_NOT_NULL( graph, platform::errors::InvalidArgument("Graph cannot be nullptr.")); FusePassBase::Init(name_scope_, graph); auto* scope = param_scope(); PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::InvalidArgument("Scope cannot be nullptr.")); GraphPatternDetector gpd; auto* conv_input = gpd.mutable_pattern() ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) ->AsInput() ->assert_is_op_input(conv_type(), "Input"); patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/); int found_conv_bn_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "handle " + conv_type() + "BN fuse"; // conv, batch_norm, // conv_weight, conv_out, // bn_scale, bn_bias, bn_mean, bn_variance, // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, // bn_saved_variance GET_CONV_BN_NODES(conv_bn_pattern); // check if fuse can be done and if MKL-DNN should be used FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm); if (fuse_option == DO_NOT_FUSE) { VLOG(3) << "do not perform " + conv_type() + " bn fuse"; return; } // Get batch norm bias auto* bn_bias_tensor = scope->FindVar(bn_bias->Name())->GetMutable(); // Create eltwise_y (conv bias) variable VarDesc eltwise_y_in_desc( patterns::PDNodeName(name_scope_, "eltwise_y_in")); eltwise_y_in_desc.SetShape(framework::vectorize(bn_bias_tensor->dims())); eltwise_y_in_desc.SetDataType(bn_bias_tensor->type()); eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel()); eltwise_y_in_desc.SetPersistable(true); auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); auto* eltwise_y_in_tensor = scope->Var(eltwise_y_in_node->Name())->GetMutable(); // Initialize eltwise_y eltwise_y_in_tensor->Resize(bn_bias_tensor->dims()); std::fill_n(eltwise_y_in_tensor->mutable_data(platform::CPUPlace()), eltwise_y_in_tensor->numel(), 0.0f); // update weights and biases float epsilon = BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon")); recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor, epsilon, conv_type()); // with MKL-DNN fuse conv+bn into conv with bias // without MKL-DNN fuse conv+bn into conv+elementwise_add if (fuse_option == FUSE_MKLDNN) { auto input_names = conv->Op()->InputNames(); bool has_bias = std::find(input_names.begin(), input_names.end(), "Bias") != input_names.end(); if (has_bias && conv->Op()->Input("Bias").size() > 0) { // reuse existing conv bias node auto conv_bias_names = conv->Op()->Input("Bias"); PADDLE_ENFORCE_EQ( conv_bias_names.size(), 1UL, platform::errors::InvalidArgument("Find input var Bais error.")); auto* conv_bias_var = scope->FindVar(conv_bias_names[0]); auto* conv_bias_tensor = conv_bias_var->GetMutable(); PADDLE_ENFORCE_EQ( conv_bias_tensor->dims(), eltwise_y_in_tensor->dims(), platform::errors::InvalidArgument( "Tensor convolution bias(%d) and elementwise y(%d) " "must have same dims.", conv_bias_tensor->dims().size(), eltwise_y_in_tensor->dims().size())); auto eigen_conv_bias = EigenVector::From(*conv_bias_tensor); eigen_conv_bias += EigenVector::From(*eltwise_y_in_tensor); } else { // add new conv_bias node conv->Op()->SetInput( "Bias", std::vector({eltwise_y_in_node->Name()})); IR_NODE_LINK_TO(eltwise_y_in_node, conv); } conv->Op()->SetOutput("Output", std::vector({bn_out->Name()})); GraphSafeRemoveNodes( graph, {conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance}); IR_NODE_LINK_TO(conv, bn_out); found_conv_bn_count++; } else { // fuse_option == FUSE_NATIVE // create an elementwise add node. OpDesc desc; desc.SetInput("X", std::vector({conv_out->Name()})); desc.SetInput("Y", std::vector({eltwise_y_in_node->Name()})); desc.SetOutput("Out", std::vector({bn_out->Name()})); desc.SetType("elementwise_add"); desc.SetAttr("axis", 1); auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied. GraphSafeRemoveNodes(graph, {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance}); IR_NODE_LINK_TO(conv_out, eltwise_op); IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op); IR_NODE_LINK_TO(eltwise_op, bn_out); found_conv_bn_count++; } }; gpd(graph, handler); AddStatis(found_conv_bn_count); } void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const { PADDLE_ENFORCE_NOT_NULL( graph, platform::errors::InvalidArgument("Graph cannot be nullptr.")); FusePassBase::Init(name_scope_, graph); auto* scope = param_scope(); PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::InvalidArgument("Scope cannot be nullptr.")); GraphPatternDetector gpd; auto* conv_input = gpd.mutable_pattern() ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) ->AsInput() ->assert_is_op_input(conv_type(), "Input"); patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/); int found_conv_bn_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "handle " + conv_type() + "BN fuse"; // conv, batch_norm, // conv_weight, conv_out, // bn_scale, bn_bias, bn_mean, bn_variance, // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance GET_CONV_BN_NODES(conv_bn_pattern); // OPERATORS GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern); // BIAS inputs GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern); // BIAS outputs GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern); // Get eltwise_y (conv bias) variable auto* eltwise_y_in_tensor = scope->FindVar(eltwise_y_in->Name())->GetMutable(); // Get batch norm bias auto* bn_bias_tensor = scope->FindVar(bn_bias->Name())->GetMutable(); // update weights and biases float epsilon = BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon")); // if bias is an input to other ops as well then we cannot overwrite it // so we create separate elementwise Y in nodes if (eltwise_y_in->outputs.size() > 1) { // Make a copy of eltwise Y input tensor // Create eltwise_y (conv bias) variable VarDesc eltwise_y_in_desc(patterns::PDNodeName( name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count))); eltwise_y_in_desc.SetShape( framework::vectorize(eltwise_y_in_tensor->dims())); eltwise_y_in_desc.SetDataType(eltwise_y_in_tensor->type()); eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel()); eltwise_y_in_desc.SetPersistable(true); auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); auto* eltwise_y_in_tensor_ex = scope->Var(eltwise_y_in_node->Name())->GetMutable(); // Initialize eltwise_y TensorCopy(*eltwise_y_in_tensor, platform::CPUPlace(), eltwise_y_in_tensor_ex); recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor_ex, epsilon, conv_type()); // Set new var eltwise->Op()->RenameInput(eltwise_y_in->Name(), eltwise_y_in_node->Name()); // Link new bias node to eltwise IR_NODE_LINK_TO(eltwise_y_in_node, eltwise); // unlink original bias from eltwise_op eltwise_y_in->outputs.erase( std::remove_if(eltwise_y_in->outputs.begin(), eltwise_y_in->outputs.end(), [&](Node*& n) { return n->id() == eltwise->id() ? true : false; }), eltwise_y_in->outputs.end()); } else { recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor, epsilon, conv_type()); } // Update the elementwise_add node eltwise->Op()->SetAttr("axis", 1); eltwise->Op()->SetOutput("Out", std::vector({bn_out->Name()})); GraphSafeRemoveNodes( graph, {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out}); IR_NODE_LINK_TO(eltwise, bn_out); found_conv_bn_count++; }; gpd(graph, handler); AddStatis(found_conv_bn_count); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass); REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass, paddle::framework::ir::ConvEltwiseAddBNFusePass); REGISTER_PASS(conv_transpose_bn_fuse_pass, paddle::framework::ir::ConvTransposeBNFusePass); REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass, paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass); REGISTER_PASS(depthwise_conv_bn_fuse_pass, paddle::framework::ir::DepthwiseConvBNFusePass); REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass, paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass); REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("conv2d", 0) .EQ("batch_norm", 0)); REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("conv2d", 0) .EQ("elementwise_add", 0) .EQ("batch_norm", 0));