test_jit_save_load.py 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19
import shutil
20 21
import unittest
import numpy as np
L
Leo Chen 已提交
22
import paddle
23
from paddle.static import InputSpec
24
import paddle.fluid as fluid
25
from paddle.fluid.layers.utils import flatten
26
from paddle.fluid.dygraph import Linear
27
from paddle.fluid.dygraph import declarative, ProgramTranslator
28
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
W
WeiXin 已提交
29
from paddle.fluid import unique_name
30 31

BATCH_SIZE = 32
32
BATCH_NUM = 10
33 34 35
SEED = 10


36 37
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
38
        np.random.seed(SEED)
39 40 41
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
42 43 44

    def __reader__():
        for _ in range(BATCH_NUM):
45 46 47
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
48 49 50 51 52 53 54 55 56 57 58 59 60 61

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


62 63 64 65 66 67 68 69 70 71
class LinearNetWithInputSpec(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithInputSpec, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
    def forward(self, x):
        return self._linear(x)


72 73 74 75 76 77 78 79 80
class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class LinerNetWithLabel(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinerNetWithLabel, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            shape=[None, 784], dtype='float32', name="image"), InputSpec(
                shape=[None, 1], dtype='int64', name="label")
    ])
    def forward(self, x, label):
        out = self._linear(x)
        loss = fluid.layers.cross_entropy(out, label)
        avg_loss = fluid.layers.mean(loss)
        return out, avg_loss


98 99 100 101 102 103 104 105 106 107 108 109 110
class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class LinearNetMultiInput(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetMultiInput, self).__init__()
        self._linear1 = Linear(in_size, out_size)
        self._linear2 = Linear(in_size, out_size)

    @declarative(input_spec=[
        InputSpec(
            [None, 8], dtype='float32'), InputSpec(
                [None, 8], dtype='float32')
    ])
    def forward(self, x, y):
        x_out = self._linear1(x)
        y_out = self._linear2(y)
        loss = fluid.layers.mean(x_out + y_out)
        return x_out, y_out, loss


class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
133 134
        self._load_linear1 = paddle.jit.load(model_path)
        self._load_linear2 = paddle.jit.load(model_path)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class LinearNetWithNestOut(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithNestOut, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        out = y + z
        loss = fluid.layers.mean(out)
        return y, [(z, loss), out]


174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class LinearNetWithDictInput(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithDictInput, self).__init__()
        self._linear = Linear(in_size, out_size)

    @paddle.jit.to_static(input_spec=[{
        'img': InputSpec(
            shape=[None, 8], dtype='float32', name='img')
    }, {
        'label': InputSpec(
            shape=[None, 1], dtype='int64', name='label')
    }])
    def forward(self, img, label):
        out = self._linear(img['img'])
        # not return loss to avoid prune output
        loss = paddle.nn.functional.cross_entropy(out, label['label'])
        return out


193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
class EmptyLayer(paddle.nn.Layer):
    def __init__(self):
        super(EmptyLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x):
        return x


class NoParamLayer(paddle.nn.Layer):
    def __init__(self):
        super(NoParamLayer, self).__init__()

    @paddle.jit.to_static
    def forward(self, x, y):
        return x + y


211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetWithMultiStaticFunc, self).__init__()
        self._linear_0 = Linear(in_size, out_size)
        self._linear_1 = Linear(in_size, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear_0(x)

    @paddle.jit.to_static
    def forward_no_param(self, x):
        return x

    @paddle.jit.to_static
    def forward_general(self, x):
        return self._linear_0(x) + self._linear_1(x) * self._scale


231
def train(layer, input_size=784, label_size=1):
232
    # create optimizer
L
Leo Chen 已提交
233
    sgd = fluid.optimizer.SGDOptimizer(
234
        learning_rate=0.01, parameter_list=layer.parameters())
235 236
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
237 238
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
239 240 241 242 243 244 245 246 247 248 249
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
L
Leo Chen 已提交
250
        sgd.minimize(avg_loss)
251 252 253 254
        layer.clear_gradients()
    return [img], layer, avg_loss


255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def train_with_label(layer, input_size=784, label_size=1):
    # create optimizer
    sgd = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        out, avg_loss = layer(img, label)

        avg_loss.backward()
        sgd.minimize(avg_loss)
        layer.clear_gradients()
    return out


276 277
class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
278
        self.model_path = "test_jit_save_load/model"
279 280 281
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
282
        paddle.seed(SEED)
L
Leo Chen 已提交
283
        paddle.framework.random._manual_program_seed(SEED)
284

285
    def train_and_save_model(self, model_path=None):
286 287
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
288
        final_model_path = model_path if model_path else self.model_path
289
        orig_input_types = [type(x) for x in example_inputs]
290 291
        paddle.jit.save(
            layer=layer, path=final_model_path, input_spec=example_inputs)
292 293
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
294 295
        return layer

296
    def test_save_load(self):
297 298 299
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
300
        loaded_layer = paddle.jit.load(self.model_path)
301 302 303 304 305
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)

    def load_and_inference(self, train_layer, infer_layer):
306
        train_layer.eval()
307
        infer_layer.eval()
308 309 310 311 312 313
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

314 315
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
316 317
        load_train_layer.train()
        # train & compare
L
Leo Chen 已提交
318 319
        img0, _, train_loss = train(train_layer)
        img1, _, load_train_loss = train(load_train_layer)
320 321 322
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

323 324
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
325
        # construct new model
326
        new_layer = LinearNet(784, 1)
327
        orig_state_dict = new_layer.state_dict()
328
        load_state_dict = paddle.load(self.model_path)
329 330 331
        for structured_name in orig_state_dict:
            self.assertTrue(structured_name in load_state_dict)
        new_layer.set_state_dict(load_state_dict)
332 333 334 335 336 337 338
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

339
    def test_load_dygraph_no_path(self):
340
        model_path = "test_jit_save_load.no_path/model_path"
341 342 343
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

344
    def test_jit_load_model_incomplete(self):
345 346 347 348
        model_path = "test_jit_save_load.remove_variables/model"
        self.train_and_save_model(model_path)
        # remove `.pdiparams`	
        var_path = model_path + INFER_PARAMS_SUFFIX
349 350 351 352
        os.remove(var_path)
        with self.assertRaises(ValueError):
            paddle.jit.load(model_path)

353 354 355 356 357
    def test_jit_load_no_path(self):
        path = "test_jit_save_load.no_path/model_path"
        with self.assertRaises(ValueError):
            loaded_layer = paddle.jit.load(path)

358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
class TestSaveLoadWithNestOut(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_nest_output(self):
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))

        net = LinearNetWithNestOut(8, 8)
        dy_outs = flatten(net(x))
        net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])

        model_path = "net_with_nest_out/model"
        paddle.jit.save(net, model_path)

        load_net = paddle.jit.load(model_path)
        load_outs = flatten(load_net(x))

        self.assertTrue(len(dy_outs) == 4)
        for dy_out, load_out in zip(dy_outs, load_outs):
            self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))


383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class TestSaveLoadWithDictInput(unittest.TestCase):
    def test_dict_input(self):
        # NOTE: This net cannot be executed, it is just 
        # a special case for exporting models in model validation
        # We DO NOT recommend this writing way of Layer
        net = LinearNetWithDictInput(8, 8)
        # net.forward.concrete_program.inputs: 
        # (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>, 
        #  {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)}, 
        #  {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
        self.assertEqual(len(net.forward.concrete_program.inputs), 3)

        path = "test_jit_save_load_with_dict_input/model"
        # prune inputs
        paddle.jit.save(
            layer=net,
            path=path,
            input_spec=[{
                'img': InputSpec(
                    shape=[None, 8], dtype='float32', name='img')
            }])

        img = paddle.randn(shape=[4, 8], dtype='float32')
        loaded_net = paddle.jit.load(path)
        loaded_out = loaded_net(img)

        # loaded_net._input_spec():
        # [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
        self.assertEqual(len(loaded_net._input_spec()), 1)


414 415 416 417 418 419 420 421 422 423 424 425
class TestSaveLoadWithInputSpec(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()

    def test_with_input_spec(self):
        net = LinearNetReturnLoss(8, 8)
        # set x.shape = [None, 8]
        net.forward = declarative(
            net.forward, input_spec=[InputSpec(
                [None, 8], name='x')])

426
        model_path = "input_spec.output_spec/model"
427 428 429 430 431 432 433
        # check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 1)
        input_x = net.forward.inputs[0]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_x.name == 'x')

        # 1. prune loss
434 435
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, output_spec=output_spec)
436 437

        # 2. load to infer
438
        infer_layer = paddle.jit.load(model_path)
439 440 441 442 443 444 445
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        pred = infer_layer(x)

    def test_multi_in_out(self):
        net = LinearNetMultiInput(8, 8)

446
        model_path = "multi_inout.output_spec1/model"
447 448 449 450 451 452 453 454
        # 1. check inputs and outputs
        self.assertTrue(len(net.forward.inputs) == 2)
        input_x = net.forward.inputs[0]
        input_y = net.forward.inputs[1]
        self.assertTrue(input_x.shape == (-1, 8))
        self.assertTrue(input_y.shape == (-1, 8))

        # 2. prune loss
455 456
        output_spec = net.forward.outputs[:2]
        paddle.jit.save(net, model_path, output_spec=output_spec)
457 458

        # 3. load to infer
459
        infer_layer = paddle.jit.load(model_path)
460 461 462 463 464 465 466 467
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        y = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        # 4. predict
        pred_x, pred_y = infer_layer(x, y)

        # 1. prune y and loss
468 469 470
        model_path = "multi_inout.output_spec2/model"
        output_spec = net.forward.outputs[:1]
        paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
471
        # 2. load again
472
        infer_layer2 = paddle.jit.load(model_path)
473 474 475 476 477 478 479
        # 3. predict
        pred_xx = infer_layer2(x)

        # 4. assert pred_x == pred_xx
        self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))


480 481 482 483 484
class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
485
        paddle.seed(SEED)
L
Leo Chen 已提交
486
        paddle.framework.random._manual_program_seed(SEED)
487 488 489 490 491 492 493 494 495 496 497 498 499

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

500 501 502
        model_path = "save_load_config.output_spec"
        output_spec = [out]
        paddle.jit.save(
503
            layer=train_layer,
504
            path=model_path,
505
            input_spec=[x],
506
            output_spec=output_spec)
507 508

        train_layer.eval()
509
        infer_layer = paddle.jit.load(model_path)
510 511 512 513 514
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    def test_save_no_support_config_error(self):
        layer = LinearNet(784, 1)
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.save(layer=layer, path=path, model_filename="")

    def test_load_empty_model_filename_error(self):
        path = "error_model_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, model_filename="")

    def test_load_empty_params_filename_error(self):
        path = "error_params_filename_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, params_filename="")

    def test_load_with_no_support_config(self):
        path = "no_support_config_test"
        with self.assertRaises(ValueError):
            paddle.jit.load(path, separate_params=True)

536

537 538 539
class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
540
        self.model_path = "jit_multi_load/model"
541 542 543
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
544
        paddle.seed(SEED)
L
Leo Chen 已提交
545
        paddle.framework.random._manual_program_seed(SEED)
546 547 548 549 550 551
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
552 553
        paddle.jit.save(
            layer=layer, path=self.model_path, input_spec=example_inputs)
554 555 556 557 558 559 560 561 562 563 564

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


565 566 567
class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
568
        self.model_path = "jit_prune_model_and_load/model"
569 570 571
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
572
        paddle.seed(SEED)
L
Leo Chen 已提交
573
        paddle.framework.random._manual_program_seed(SEED)
574 575 576 577 578 579 580 581 582 583 584 585 586

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

587 588
        output_spec = [hidden]
        paddle.jit.save(
589
            layer=train_layer,
590
            path=self.model_path,
591
            input_spec=[x],
592
            output_spec=output_spec)
593 594 595 596 597 598 599

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

600
        infer_layer = paddle.jit.load(self.model_path)
601 602 603 604 605 606 607 608 609 610

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
611
        var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
612 613 614 615 616 617 618
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
619
            paddle.jit.load(self.model_path)
620 621


622 623 624 625 626
class TestJitSaveMultiCases(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
C
cnn 已提交
627
        paddle.seed(SEED)
628 629 630 631 632 633 634
        paddle.framework.random._manual_program_seed(SEED)

    def verify_inference_correctness(self, layer, model_path, with_label=False):
        layer.eval()
        loaded_layer = paddle.jit.load(model_path)
        loaded_layer.eval()
        # inference & compare
Z
Zhou Wei 已提交
635
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
636
        if with_label:
Z
Zhou Wei 已提交
637
            y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
            pred, _ = layer(x, y)
            pred = pred.numpy()
        else:
            pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_no_prune_to_static_after_train(self):
        layer = LinearNet(784, 1)

        train(layer)

653
        model_path = "test_no_prune_to_static_after_train/model"
654 655 656 657 658 659 660
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_to_static_no_train(self):
        layer = LinearNetWithInputSpec(784, 1)

661
        model_path = "test_no_prune_to_static_no_train/model"
662 663 664 665 666 667 668 669 670
        paddle.jit.save(layer, model_path)

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train(self):
        layer = LinearNetNotDeclarative(784, 1)

        train(layer)

671
        model_path = "test_no_prune_no_to_static_after_train/model"
672 673 674 675 676 677 678 679 680 681 682 683 684
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_after_train_with_examples(self):
        layer = LinearNetNotDeclarative(784, 1)

        example_inputs, _, _ = train(layer)

685 686
        model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
        paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
687 688 689 690 691 692

        self.verify_inference_correctness(layer, model_path)

    def test_no_prune_no_to_static_no_train(self):
        layer = LinearNetNotDeclarative(784, 1)

693
        model_path = "test_no_prune_no_to_static_no_train/model"
694 695 696 697 698 699 700 701 702 703 704 705 706
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])

        self.verify_inference_correctness(layer, model_path)

    def test_prune_to_static_after_train(self):
        layer = LinerNetWithLabel(784, 1)

        out = train_with_label(layer)

707
        model_path = "test_prune_to_static_after_train/model"
708 709 710 711 712 713 714
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
715
            output_spec=[out])
716 717 718 719 720 721

        self.verify_inference_correctness(layer, model_path, True)

    def test_prune_to_static_no_train(self):
        layer = LinerNetWithLabel(784, 1)

722
        model_path = "test_prune_to_static_no_train/model"
723 724
        # TODO: no train, cannot get output_spec var here
        # now only can use index
725
        output_spec = layer.forward.outputs[:1]
726 727 728 729 730 731 732
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name="image")
            ],
733
            output_spec=output_spec)
734 735 736 737 738 739 740 741

        self.verify_inference_correctness(layer, model_path, True)

    def test_no_prune_input_spec_name_warning(self):
        layer = LinearNetWithInputSpec(784, 1)

        train(layer)

742
        model_path = "test_no_prune_input_spec_name_warning/model"
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[InputSpec(
                shape=[None, 784], dtype='float32')])
        paddle.jit.save(
            layer,
            model_path,
            input_spec=[
                InputSpec(
                    shape=[None, 784], dtype='float32', name='feed_input')
            ])

        self.verify_inference_correctness(layer, model_path)

    def test_not_prune_output_spec_name_warning(self):
        layer = LinearNet(784, 1)

        train(layer)

763
        model_path = "test_not_prune_output_spec_name_warning/model"
Z
Zhou Wei 已提交
764
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
765
        paddle.jit.save(layer, model_path, output_spec=[out])
766 767 768 769 770 771

        self.verify_inference_correctness(layer, model_path)

    def test_prune_input_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

772
        model_path = "test_prune_input_spec_name_error/model"
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[InputSpec(
                    shape=[None, 784], dtype='float32')])
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name='feed_input')
                ])

    def test_prune_output_spec_name_error(self):
        layer = LinerNetWithLabel(784, 1)

        train_with_label(layer)

793
        model_path = "test_prune_to_static_after_train/model"
Z
Zhou Wei 已提交
794
        out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
795 796 797 798 799 800 801 802
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer,
                model_path,
                input_spec=[
                    InputSpec(
                        shape=[None, 784], dtype='float32', name="image")
                ],
803
                output_spec=[out])
804 805


806 807
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
    def setUp(self):
808
        self.model_path = "jit_save_load_empty_layer/model"
809 810 811 812 813
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_empty_layer(self):
        layer = EmptyLayer()
Z
Zhou Wei 已提交
814
        x = paddle.to_tensor(np.random.random((10)).astype('float32'))
815 816 817 818 819 820 821 822 823
        out = layer(x)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x)
        self.assertTrue(np.array_equal(out, load_out))


class TestJitSaveLoadNoParamLayer(unittest.TestCase):
    def setUp(self):
824
        self.model_path = "jit_save_load_no_param_layer/model"
825 826 827 828 829
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_no_param_layer(self):
        layer = NoParamLayer()
Z
Zhou Wei 已提交
830 831
        x = paddle.to_tensor(np.random.random((5)).astype('float32'))
        y = paddle.to_tensor(np.random.random((5)).astype('float32'))
832 833 834 835 836 837 838
        out = layer(x, y)
        paddle.jit.save(layer, self.model_path)
        load_layer = paddle.jit.load(self.model_path)
        load_out = load_layer(x, y)
        self.assertTrue(np.array_equal(out, load_out))


839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
class TestJitSaveLoadMultiMethods(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_jit_save_load_inference(self):
        model_path_inference = "jit_save_load_multi_methods/model"
        IMAGE_SIZE = 224
        layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
        inps = paddle.randn([1, IMAGE_SIZE])
        result_origin = {}
        for func in dir(layer):
            if func.startswith('forward'):
                result_origin[func] = getattr(layer, func, None)(inps)
        paddle.jit.save(layer, model_path_inference)
        load_net = paddle.jit.load(model_path_inference)
        for func, result in result_origin.items():
            self.assertTrue(
                float((result - getattr(load_net, func, None)(inps)).abs().max(
                )) < 1e-5)

    def test_jit_save_load_multi_methods_inputspec(self):
        model_path = 'jit_save_load_multi_methods/model'
        layer = LinearNetWithMultiStaticFunc(784, 1)
        with self.assertRaises(ValueError):
            paddle.jit.save(
                layer, model_path, input_spec=[InputSpec(shape=[None, 784])])

867 868 869 870 871 872 873 874 875 876 877 878
    def test_parse_name(self):
        model_path_inference = "jit_save_load_parse_name/model"
        IMAGE_SIZE = 224
        layer = LinearNet(IMAGE_SIZE, 1)
        inps = paddle.randn([1, IMAGE_SIZE])
        layer(inps)
        paddle.jit.save(layer, model_path_inference)
        paddle.jit.save(layer, model_path_inference + '_v2')
        load_net = paddle.jit.load(model_path_inference)

        self.assertFalse(hasattr(load_net, 'v2'))

879

W
WeiXin 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
class LayerSaved(paddle.nn.Layer):
    def __init__(self, in_size, out_size):
        super(LayerSaved, self).__init__()
        self.hidden = 100
        self._linear_0 = Linear(in_size, self.hidden)
        self._linear_1_0 = Linear(self.hidden, self.hidden)
        self._linear_1_1 = Linear(self.hidden, self.hidden)
        self._linear_2 = Linear(self.hidden, out_size)
        self._scale = paddle.to_tensor(9.9)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
        else:
            y += self._linear_1_1(y + self._scale)
        return self._linear_2(y)


class LayerLoadFinetune(paddle.nn.Layer):
    def __init__(self, in_size, out_size, load_path):
        super(LayerLoadFinetune, self).__init__()
        # Test duplicate name
        self._linear_0 = Linear(in_size, in_size)
        self._linear_1_0 = Linear(out_size, in_size)
        self._linear_1_1 = Linear(out_size, in_size)
        self._linear_2 = Linear(out_size, out_size)
        self._scale = paddle.to_tensor(9.9)

        # Load multiple times
        self._load_l1 = paddle.jit.load(load_path)
        self._load_l2 = paddle.jit.load(load_path)

    @paddle.jit.to_static
    def forward(self, x):
        y = self._linear_0(x)
        y = self._load_l1(y)
        # Multiple blocks
        if x.shape[0] == 1:
            y = self._linear_1_0(y)
            y = self._load_l1(y)
        else:
            y += self._linear_1_1(x + self._scale)
            y = self._load_l2(y)
        y = self._linear_1_0(y)
        y = self._load_l1(y)
        y = self._linear_1_0(y)
        # Use the same layer multiple times.
        y = self._load_l1(y)
        return y


934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_save_without_running/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        #save
        paddle.jit.save(
            layer_save,
            model_path,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, IMAGE_SIZE], dtype='float32')
            ])

        result_00 = layer_save(inps0)
        result_01 = layer_save(inps1)
        #load and save without running
        with unique_name.guard():
            layer_load = paddle.jit.load(model_path)
            paddle.jit.save(
                layer_load,
                model_path,
                input_spec=[
                    paddle.static.InputSpec(
                        shape=[None, IMAGE_SIZE], dtype='float32')
                ])
        #reload
        layer_reload = paddle.jit.load(model_path)
        result_10 = layer_reload(inps0)
        result_11 = layer_reload(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)


W
WeiXin 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        paddle.disable_static()

    def test_save_load_finetune_load(self):
        model_path = "test_jit_save_load_finetune_load/model"
        IMAGE_SIZE = 224
        inps0 = paddle.randn([1, IMAGE_SIZE])
        inps1 = paddle.randn([2, IMAGE_SIZE])
        # Use new namespace
        with unique_name.guard():
            layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
        layer_save(inps0)
        #save
        paddle.jit.save(layer_save, model_path)
        #load
        with unique_name.guard():
            layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
        #train
        train(layer_load, input_size=IMAGE_SIZE)
        result_00 = layer_load(inps0)
        result_01 = layer_load(inps1)
        #save
        paddle.jit.save(layer_load, model_path)
        #load
        layer_finetune = paddle.jit.load(model_path)
        result_10 = layer_finetune(inps0)
        result_11 = layer_finetune(inps1)

        self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
        self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)


1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
class TestJitSaveLoadDataParallel(unittest.TestCase):
    def verify_inference_correctness(self, layer, path):
        layer.eval()
        loaded_layer = paddle.jit.load(path)
        loaded_layer.eval()
        # inference & compare
        x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
        pred = layer(x).numpy()
        loaded_pred = loaded_layer(x).numpy()
        self.assertTrue(
            np.array_equal(pred, loaded_pred),
            msg="Result diff when load and inference:\nlayer result:\n{}\n" \
                "loaded layer result:\n{}".format(pred, loaded_pred))

    def test_jit_save_data_parallel_with_inputspec(self):
        layer = LinearNetNotDeclarative(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_inputspec/model"
        paddle.jit.save(
            layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])])

        self.verify_inference_correctness(layer, path)

    def test_jit_save_data_parallel_with_to_static(self):
        layer = LinearNetWithInputSpec(784, 1)
        layer = paddle.DataParallel(layer)

        path = "jit_save_data_parallel_with_to_static/model"
        paddle.jit.save(layer, path)

        self.verify_inference_correctness(layer, path)


1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
class InputSepcLayer(paddle.nn.Layer):
    '''
    A layer with InputSpec to test InputSpec compatibility
    '''

    @paddle.jit.to_static(input_spec=[
        InputSpec(
            shape=[None, 8], dtype='float32', name='x'), InputSpec(
                shape=[None, 1], dtype='float64', name='y')
    ])
    def forward(self, x, y):
        return x, y


class TestInputSpecCompatibility(unittest.TestCase):
    def _assert_input_spec_layer_return(self, expect_layer, test_layer):
        input_x = paddle.uniform([8, 8], dtype='float32')
        input_y = paddle.uniform([8, 1], dtype='float64')
        expected_result = expect_layer(input_x, input_y)
        test_result = test_layer(input_x, input_y)
        np.testing.assert_allclose(expected_result[0].numpy(),
                                   test_result[0].numpy())
        np.testing.assert_allclose(expected_result[1].numpy(),
                                   test_result[1].numpy())

    def test_jit_save_compatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        paddle.jit.save(layer=layer, path=path)
        no_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, no_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[None, 8], dtype='float32', name='x'), InputSpec(
                        shape=[None, 1], dtype='float64', name='y')
            ])
        same_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, same_input_spec_layer)
        shutil.rmtree(save_dir)

        paddle.jit.save(
            layer=layer,
            path=path,
            input_spec=[
                InputSpec(
                    shape=[8, 8], dtype='float32'), InputSpec(
                        shape=[8, -1], dtype='float64')
            ])
        compatible_input_spec_layer = paddle.jit.load(path)
        self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
        shutil.rmtree(save_dir)

    def test_jit_save_incompatible_input_sepc(self):
        layer = InputSepcLayer()
        save_dir = "jit_save_compatible_input_spec"
        path = save_dir + "/model"

        with self.assertRaises(ValueError):
            # type mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float64'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape len mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8, 1], dtype='float32'), InputSpec(
                            shape=[None, 1], dtype='float64')
                ])

        with self.assertRaises(ValueError):
            # shape mismatch
            paddle.jit.save(
                layer=layer,
                path=path,
                input_spec=[
                    InputSpec(
                        shape=[None, 8], dtype='float32'), InputSpec(
                            shape=[None, 2], dtype='float64')
                ])
        if os.path.exists(save_dir):
            shutil.rmtree(save_dir)


1145 1146
if __name__ == '__main__':
    unittest.main()