test_jit_save_load.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
18
import pickle
19 20 21 22 23 24
import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
25 26
from paddle.fluid.dygraph import declarative, ProgramTranslator
from paddle.fluid.dygraph.io import VARIABLE_FILENAME, EXTRA_VAR_INFO_FILENAME
27 28

BATCH_SIZE = 32
29
BATCH_NUM = 10
30 31 32
SEED = 10


33 34
def random_batch_reader(input_size, label_size):
    def _get_random_inputs_and_labels(input_size, label_size):
35
        np.random.seed(SEED)
36 37 38
        input = np.random.random(size=input_size).astype('float32')
        label = np.random.random(size=label_size).astype('int64')
        return input, label
39 40 41

    def __reader__():
        for _ in range(BATCH_NUM):
42 43 44
            batch_input, batch_label = _get_random_inputs_and_labels(
                [BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
            yield batch_input, batch_label
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    return __reader__


class LinearNet(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNet, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        return self._linear(x)


class LinearNetNotDeclarative(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetNotDeclarative, self).__init__()
        self._linear = Linear(in_size, out_size)

    def forward(self, x):
        return self._linear(x)


class LinearNetReturnLoss(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnLoss, self).__init__()
        self._linear = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear(x)
        z = self._linear(y)
        loss = fluid.layers.mean(z)
        return z, loss


81
def train(layer, input_size=784, label_size=1):
82
    # create optimizer
83 84
    adam = fluid.optimizer.SGDOptimizer(
        learning_rate=0.01, parameter_list=layer.parameters())
85 86
    # create data loader
    train_loader = fluid.io.DataLoader.from_generator(capacity=5)
87 88
    train_loader.set_batch_generator(
        random_batch_reader(input_size, label_size))
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    # train
    for data in train_loader():
        img, label = data
        label.stop_gradient = True

        cost = layer(img)

        loss = fluid.layers.cross_entropy(cost, label)
        avg_loss = fluid.layers.mean(loss)

        avg_loss.backward()
        adam.minimize(avg_loss)
        layer.clear_gradients()
    return [img], layer, avg_loss


class TestJitSaveLoad(unittest.TestCase):
    def setUp(self):
        self.model_path = "model.test_jit_save_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED

113
    def train_and_save_model(self, model_path=None, configs=None):
114 115
        layer = LinearNet(784, 1)
        example_inputs, layer, _ = train(layer)
116
        final_model_path = model_path if model_path else self.model_path
117
        orig_input_types = [type(x) for x in example_inputs]
118
        fluid.dygraph.jit.save(
119 120 121 122
            layer=layer,
            model_path=final_model_path,
            input_spec=example_inputs,
            configs=configs)
123 124
        new_input_types = [type(x) for x in example_inputs]
        self.assertEqual(orig_input_types, new_input_types)
125 126
        return layer

127
    def test_save_load(self):
128 129 130
        # train and save model
        train_layer = self.train_and_save_model()
        # load model
131 132 133 134 135 136 137 138 139
        program_translator = ProgramTranslator()
        program_translator.enable(False)
        loaded_layer = fluid.dygraph.jit.load(self.model_path)
        self.load_and_inference(train_layer, loaded_layer)
        self.load_dygraph_state_dict(train_layer)
        self.load_and_finetune(train_layer, loaded_layer)
        program_translator.enable(True)

    def load_and_inference(self, train_layer, infer_layer):
140
        train_layer.eval()
141
        infer_layer.eval()
142 143 144 145 146 147
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

148 149
    def load_and_finetune(self, train_layer, load_train_layer):
        train_layer.train()
150 151 152 153 154 155 156
        load_train_layer.train()
        # train & compare
        _, _, train_loss = train(train_layer)
        _, _, load_train_loss = train(load_train_layer)
        self.assertTrue(
            np.array_equal(train_loss.numpy(), load_train_loss.numpy()))

157 158 159 160 161 162 163 164 165 166 167 168 169
    def load_dygraph_state_dict(self, train_layer):
        train_layer.eval()
        # contruct new model
        new_layer = LinearNet(784, 1)
        model_dict, _ = fluid.dygraph.load_dygraph(self.model_path)
        new_layer.set_dict(model_dict)
        new_layer.eval()
        # inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))

170 171 172 173 174 175 176 177 178
    def test_save_get_program_failed(self):
        layer = LinearNetNotDeclarative(784, 1)
        example_inputs, layer, _ = train(layer)
        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.save(
                layer=layer,
                model_path=self.model_path,
                input_spec=example_inputs)

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def test_load_dygraoh_no_path(self):
        model_path = "model.test_jit_save_load.no_path"
        new_layer = LinearNet(784, 1)
        with self.assertRaises(ValueError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

    def test_load_dygraph_no_var_info(self):
        model_path = "model.test_jit_save_load.no_var_info"
        self.train_and_save_model(model_path=model_path)
        # remove `__variables.info__`
        var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        os.remove(var_info_path)
        new_layer = LinearNet(784, 1)
        with self.assertRaises(RuntimeError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

    def test_load_dygraph_not_var_file(self):
        model_path = "model.test_jit_save_load.no_var_file"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.train_and_save_model(model_path=model_path, configs=configs)
        new_layer = LinearNet(784, 1)
        with self.assertRaises(RuntimeError):
            model_dict, _ = fluid.dygraph.load_dygraph(model_path)

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

class TestJitSaveLoadConfig(unittest.TestCase):
    def setUp(self):
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED

    def basic_save_load(self, layer, model_path, configs):
        # 1. train & save
        example_inputs, train_layer, _ = train(layer)
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=example_inputs,
            configs=configs)
        # 2. load 
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        train_layer.eval()
        # 3. inference & compare
        x = fluid.dygraph.to_variable(
            np.random.random((1, 784)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))

    def test_model_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.model_filename = "__simplenet__"
        self.basic_save_load(layer, model_path, configs)

    def test_params_filename(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.params_filename"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.params_filename = "__params__"
        self.basic_save_load(layer, model_path, configs)

    def test_separate_params(self):
        layer = LinearNet(784, 1)
        model_path = "model.save_load_config.separate_params"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.separate_params = True
        self.basic_save_load(layer, model_path, configs)

    def test_output_spec(self):
        train_layer = LinearNetReturnLoss(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            out, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        model_path = "model.save_load_config.output_spec"
        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [out]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=model_path,
            input_spec=[x],
            configs=configs)

        train_layer.eval()
        infer_layer = fluid.dygraph.jit.load(model_path, configs=configs)
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
class MultiLoadingLinearNet(fluid.dygraph.Layer):
    def __init__(self, size, model_path):
        super(MultiLoadingLinearNet, self).__init__()
        self._linear = Linear(size, size)
        self._load_linear1 = fluid.dygraph.jit.load(model_path)
        self._load_linear2 = fluid.dygraph.jit.load(model_path)

    @declarative
    def forward(self, x):
        tmp1 = self._linear(x)
        tmp2 = self._load_linear1(tmp1)
        tmp3 = self._load_linear2(tmp2)
        y = self._linear(tmp3)
        return y


class TestJitMultipleLoading(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_multi_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED
        # train and save base model
        self.train_and_save_orig_model()

    def train_and_save_orig_model(self):
        layer = LinearNet(self.linear_size, self.linear_size)
        example_inputs, layer, _ = train(layer, self.linear_size, 1)
        fluid.dygraph.jit.save(
            layer=layer, model_path=self.model_path, input_spec=example_inputs)

    def test_load_model_retransform_inference(self):
        multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
                                                   self.model_path)
        state_dict = multi_loaded_layer.state_dict()
        name_set = set()
        for _, var in state_dict.items():
            self.assertTrue(var.name not in name_set)
            name_set.add(var.name)


322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
class LinearNetReturnHidden(fluid.dygraph.Layer):
    def __init__(self, in_size, out_size):
        super(LinearNetReturnHidden, self).__init__()
        self._linear_1 = Linear(in_size, out_size)
        self._linear_2 = Linear(in_size, out_size)

    @declarative
    def forward(self, x):
        y = self._linear_1(x)
        z = self._linear_2(y)
        loss = fluid.layers.mean(z)
        return y, loss


class TestJitPruneModelAndLoad(unittest.TestCase):
    def setUp(self):
        self.linear_size = 4
        self.model_path = "model.jit_prune_model_and_load"
        # enable dygraph mode
        fluid.enable_dygraph()
        # config seed
        fluid.default_main_program().random_seed = SEED

    def train_and_save(self):
        train_layer = LinearNetReturnHidden(8, 8)
        adam = fluid.optimizer.AdamOptimizer(
            learning_rate=0.1, parameter_list=train_layer.parameters())
        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        for i in range(10):
            hidden, loss = train_layer(x)
            loss.backward()
            adam.minimize(loss)
            train_layer.clear_gradients()

        configs = fluid.dygraph.jit.SaveLoadConfig()
        configs.output_spec = [hidden]
        fluid.dygraph.jit.save(
            layer=train_layer,
            model_path=self.model_path,
            input_spec=[x],
            configs=configs)

        return train_layer

    def test_load_pruned_model(self):
        train_layer = self.train_and_save()
        train_layer.eval()

        infer_layer = fluid.dygraph.jit.load(self.model_path)

        x = fluid.dygraph.to_variable(
            np.random.random((4, 8)).astype('float32'))
        self.assertTrue(
            np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))

    def test_load_var_not_in_extra_var_info(self):
        self.train_and_save()

        # chage extra var info
        var_info_path = os.path.join(self.model_path, EXTRA_VAR_INFO_FILENAME)
        with open(var_info_path, 'rb') as f:
            extra_var_info = pickle.load(f)
            extra_var_info.clear()
        with open(var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)

        with self.assertRaises(RuntimeError):
            fluid.dygraph.jit.load(self.model_path)


393 394
if __name__ == '__main__':
    unittest.main()