rnn.py 159.8 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import sys
G
Guo Sheng 已提交
18
from functools import partial, reduce
J
Jiaqi Liu 已提交
19
import warnings
G
Guo Sheng 已提交
20

21
import paddle
22
from paddle.utils import deprecated
G
Guo Sheng 已提交
23 24 25 26
from . import nn
from . import tensor
from . import control_flow
from . import utils
27
from . import sequence_lod
G
Guo Sheng 已提交
28
from .utils import *
weixin_46829950's avatar
weixin_46829950 已提交
29
from .. import core
30 31
from ..framework import default_main_program
from ..data_feeder import convert_dtype
32
from ..layer_helper import LayerHelper
J
Jiabin Yang 已提交
33
from ..framework import _non_static_mode
34
from ..param_attr import ParamAttr
X
Xing Wu 已提交
35
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
P
pangyoki 已提交
36 37 38 39
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
G
Guo Sheng 已提交
40 41 42 43 44 45 46 47

__all__ = [
    'RNNCell',
    'GRUCell',
    'LSTMCell',
    'Decoder',
    'BeamSearchDecoder',
    'rnn',
F
Feiyu Chan 已提交
48
    'birnn',
G
Guo Sheng 已提交
49
    'dynamic_decode',
50 51 52 53 54
    'DecodeHelper',
    'TrainingHelper',
    'GreedyEmbeddingHelper',
    'SampleEmbeddingHelper',
    'BasicDecoder',
55 56 57 58 59 60 61 62
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'lstm_unit',
    'lstm',
    'beam_search',
    'beam_search_decode',
G
Guo Sheng 已提交
63 64 65 66 67
]


class RNNCell(object):
    """
68
	:api_attr: Static Graph
S
swtkiwi 已提交
69

G
Guo Sheng 已提交
70 71 72 73 74 75
    RNNCell is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

    def call(self, inputs, states, **kwargs):
76
        r"""
G
Guo Sheng 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        Every cell must implement this method to do the calculations mapping the
        inputs and states to the output and new states.

        To be more flexible, both inputs and states can be a tensor variable or
        a nested structure (list|tuple|namedtuple|dict) of tensor variable, that
        is, a (possibly nested structure of) tensor variable[s].

        Parameters:
            inputs: A (possibly nested structure of) tensor variable[s].
            states: A (possibly nested structure of) tensor variable[s].
            **kwargs: Additional keyword arguments, provided by the caller. 
        
        Returns:
            tuple: outputs and new_states pair. outputs and new_states both \
                can be nested structure of tensor variables. new_states must \
                have the same structure with states.

        """
        raise NotImplementedError("RNNCell must implent the call function.")

    def __call__(self, inputs, states, **kwargs):
        return self.call(inputs, states, **kwargs)

    def get_initial_states(self,
                           batch_ref,
                           shape=None,
X
Xing Wu 已提交
103
                           dtype='float32',
104 105
                           init_value=0,
                           batch_dim_idx=0):
106
        r"""
G
Guo Sheng 已提交
107 108 109 110 111 112 113
        Generate initialized states according to provided shape, data type and
        value.

        Parameters:
            batch_ref: A (possibly nested structure of) tensor variable[s].
                The first dimension of the tensor will be used as batch size to
                initialize states.
T
tianshuo78520a 已提交
114
            shape: A (possibly nested structure of) shape[s], where a shape is
G
Guo Sheng 已提交
115 116 117
                represented as a list/tuple of integer). -1(for batch size) will
                beautomatically inserted if shape is not started with it. If None,
                property `state_shape` will be used. The default value is None.
T
tianshuo78520a 已提交
118
            dtype: A (possibly nested structure of) data type[s]. The structure
G
Guo Sheng 已提交
119
                must be same as that of `shape`, except when all tensors' in states
X
Xing Wu 已提交
120
                has the same data type, a single data type can be used. If
G
Guo Sheng 已提交
121
                property `cell.state_shape` is not available, float32 will be used
X
Xing Wu 已提交
122
                as the data type. The default value is float32.
G
Guo Sheng 已提交
123
            init_value: A float value used to initialize states.
124 125
            batch_dim_idx: An integer indicating which dimension of the tensor in
                inputs represents batch size.  The default value is 0.
G
Guo Sheng 已提交
126 127 128 129 130
        
        Returns:
            Variable: tensor variable[s] packed in the same structure provided \
                by shape, representing the initialized states.
        """
X
Xing Wu 已提交
131 132 133 134 135 136 137
        if sys.version_info < (3, ):
            integer_types = (
                int,
                long, )
        else:
            integer_types = (int, )
        check_variable_and_dtype(batch_ref, 'batch_ref',
L
liu zhengxi 已提交
138 139
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'RNNCell')
X
Xing Wu 已提交
140 141 142 143 144 145 146 147 148 149 150 151
        check_type(shape, 'shape', (list, tuple, type(None), integer_types),
                   'RNNCell')
        if isinstance(shape, (list, tuple)):
            shapes = map_structure(lambda x: x, shape)
            if isinstance(shape, list):
                for i, _shape in enumerate(shapes):
                    check_type(_shape, 'shapes[' + str(i) + ']', integer_types,
                               'RNNCell')
            else:
                check_type(shapes, 'shapes', integer_types, 'RNNCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'RNNCell')

G
Guo Sheng 已提交
152 153 154 155
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
156 157 158 159 160 161
            if sys.version_info < (3, ):
                integer_types = (
                    int,
                    long, )
            else:
                integer_types = (int, )
G
Guo Sheng 已提交
162 163
            """For shape, list/tuple of integer is the finest-grained objection"""
            if (isinstance(seq, list) or isinstance(seq, tuple)):
164 165
                if reduce(lambda flag, x: isinstance(x, integer_types) and flag,
                          seq, True):
G
Guo Sheng 已提交
166 167 168 169
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
P
pangyoki 已提交
170
            return (isinstance(seq, Sequence) and
G
Guo Sheng 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
                    not isinstance(seq, six.string_types))

        class Shape(object):
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:  # use fp32 as default
            states_dtypes = "float32"
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
            lambda shape, dtype: tensor.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
198 199
                value=init_value,
                input_dim_idx=batch_dim_idx), states_shapes, states_dtypes)
G
Guo Sheng 已提交
200 201 202 203 204
        return init_states

    @property
    def state_shape(self):
        """
205
        Abstract method (property).
G
Guo Sheng 已提交
206
        Used to initialize states.
T
tianshuo78520a 已提交
207
        A (possibly nested structure of) shape[s], where a shape is represented
G
Guo Sheng 已提交
208 209 210 211 212 213
        as a list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it). 
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
214 215
        raise NotImplementedError(
            "Please add implementaion for `state_shape` in the used cell.")
G
Guo Sheng 已提交
216 217 218 219

    @property
    def state_dtype(self):
        """
220
        Abstract method (property).
G
Guo Sheng 已提交
221
        Used to initialize states.
T
tianshuo78520a 已提交
222
        A (possibly nested structure of) data types[s]. The structure must be
G
Guo Sheng 已提交
223
        same as that of `shape`, except when all tensors' in states has the same
T
tianshuo78520a 已提交
224
        data type, a single data type can be used.
G
Guo Sheng 已提交
225 226 227 228
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
229 230
        raise NotImplementedError(
            "Please add implementaion for `state_dtype` in the used cell.")
G
Guo Sheng 已提交
231 232 233


class GRUCell(RNNCell):
234
    r"""
235
	:api_attr: Static Graph
S
swtkiwi 已提交
236

G
Guo Sheng 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    Gated Recurrent Unit cell. It is a wrapper for 
    `fluid.contrib.layers.rnn_impl.BasicGRUUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

    For more details, please refer to  `Learning Phrase Representations using
    RNN Encoder Decoder for Statistical Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.GRUCell(hidden_size=256)
    """

    def __init__(self,
                 hidden_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 dtype="float32",
                 name="GRUCell"):
        """
        Constructor of GRUCell.

        Parameters:
            hidden_size (int): The hidden size in the GRU cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of GRU. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: `fluid.layers.sigmoid`.
            activation (function, optional): The activation function for :math:`act_c`.
                Default: `fluid.layers.tanh`.
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
287 288
        check_type(hidden_size, 'hidden_size', (int), 'GRUCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'GRUCell')
G
Guo Sheng 已提交
289 290 291 292 293 294 295
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
        self.gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
            name, hidden_size, param_attr, bias_attr, gate_activation,
            activation, dtype)

    def call(self, inputs, states):
296
        r"""
G
Guo Sheng 已提交
297 298 299 300 301
        Perform calculations of GRU.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
302
                should be float32 or float64.
G
Guo Sheng 已提交
303 304
            states(Variable): A tensor with shape `[batch_size, hidden_size]`.
                corresponding to :math:`h_{t-1}` in the formula. The data type
X
Xing Wu 已提交
305
                should be float32 or float64.
G
Guo Sheng 已提交
306 307 308 309 310 311 312

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` and \
                `new_states` is the same tensor shaped `[batch_size, hidden_size]`, \
                corresponding to :math:`h_t` in the formula. The data type of the \
                tensor is same as that of `states`.        
        """
X
Xing Wu 已提交
313 314 315 316 317

        check_variable_and_dtype(inputs, 'inputs', ['float32', 'float64'],
                                 'GRUCell')
        check_variable_and_dtype(states, 'states', ['float32', 'float64'],
                                 'GRUCell')
G
Guo Sheng 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
        new_hidden = self.gru_unit(inputs, states)
        return new_hidden, new_hidden

    @property
    def state_shape(self):
        """
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to :math:`h_{t-1}`.
        """
        return [self.hidden_size]


class LSTMCell(RNNCell):
332
    r"""
333
	:api_attr: Static Graph
S
swtkiwi 已提交
334

G
Guo Sheng 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    Long-Short Term Memory cell. It is a wrapper for 
    `fluid.contrib.layers.rnn_impl.BasicLSTMUnit` to make it adapt to RNNCell.

    The formula used is as follow:

    .. math::

        i_{t} & = act_g(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = act_g(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} act_c (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = act_g(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} act_c (c_{t})
    
    For more details, please refer to `RECURRENT NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            cell = layers.LSTMCell(hidden_size=256)
    """

    def __init__(self,
                 hidden_size,
                 param_attr=None,
                 bias_attr=None,
                 gate_activation=None,
                 activation=None,
                 forget_bias=1.0,
                 dtype="float32",
                 name="LSTMCell"):
        """
        Constructor of LSTMCell.

        Parameters:
            hidden_size (int): The hidden size in the LSTM cell.
            param_attr(ParamAttr, optional): The parameter attribute for the learnable
                weight matrix. Default: None.
            bias_attr (ParamAttr, optional): The parameter attribute for the bias
                of LSTM. Default: None.
            gate_activation (function, optional): The activation function for :math:`act_g`.
                Default: 'fluid.layers.sigmoid'.
            activation (function, optional): The activation function for :math:`act_h`.
                Default: 'fluid.layers.tanh'.
            forget_bias(float, optional): forget bias used when computing forget gate.
                Default 1.0
            dtype(string, optional): The data type used in this cell. Default float32.
            name(string, optional) : The name scope used to identify parameters and biases.
        """
X
Xing Wu 已提交
389 390 391

        check_type(hidden_size, 'hidden_size', (int), 'LSTMCell')
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'LSTMCell')
G
Guo Sheng 已提交
392 393 394 395 396 397 398
        self.hidden_size = hidden_size
        from .. import contrib  # TODO: resolve recurrent import
        self.lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
            name, hidden_size, param_attr, bias_attr, gate_activation,
            activation, forget_bias, dtype)

    def call(self, inputs, states):
399
        r"""
G
Guo Sheng 已提交
400 401 402 403 404
        Perform calculations of LSTM.

        Parameters:
            inputs(Variable): A tensor with shape `[batch_size, input_size]`,
                corresponding to :math:`x_t` in the formula. The data type
X
Xing Wu 已提交
405
                should be float32 or float64.
T
tianshuo78520a 已提交
406
            states(Variable): A list of containing two tensors, each shaped
G
Guo Sheng 已提交
407
                `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}, c_{t-1}`
X
Xing Wu 已提交
408
                in the formula. The data type should be float32 or float64.
G
Guo Sheng 已提交
409 410 411 412 413 414 415 416 417

        Returns:
            tuple: A tuple( :code:`(outputs, new_states)` ), where `outputs` is \
                a tensor with shape `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}` in the formula; `new_states` is a list containing \
                two tenser variables shaped `[batch_size, hidden_size]`, corresponding \
                to :math:`h_{t}, c_{t}` in the formula. The data type of these \
                tensors all is same as that of `states`.
        """
X
Xing Wu 已提交
418 419 420 421 422 423 424 425 426

        check_variable_and_dtype(inputs, 'inputs', ['float32', 'float64'],
                                 'LSTMCell')
        check_type(states, 'states', list, 'LSTMCell')
        if isinstance(states, list):
            for i, state in enumerate(states):
                check_variable_and_dtype(state, 'state[' + str(i) + ']',
                                         ['float32', 'float64'], 'LSTMCell')

G
Guo Sheng 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        pre_hidden, pre_cell = states
        new_hidden, new_cell = self.lstm_unit(inputs, pre_hidden, pre_cell)
        return new_hidden, [new_hidden, new_cell]

    @property
    def state_shape(self):
        """
        The `state_shape` of LSTMCell is a list with two shapes: `[[hidden_size], [hidden_size]]`
        (-1 for batch size would be automatically inserted into shape). These two
        shapes correspond to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
        return [[self.hidden_size], [self.hidden_size]]


def rnn(cell,
        inputs,
        initial_states=None,
        sequence_length=None,
        time_major=False,
        is_reverse=False,
        **kwargs):
    """
    rnn creates a recurrent neural network specified by RNNCell `cell`,
F
Feiyu Chan 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`) 
    repeatedly until reaches to the maximum length of `inputs`.

    Arguments:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences. 
            If time_major is True, the shape is 
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the 
            rnn cell. Tensor or a possibly nested structure of tensors. If not 
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whose time step 
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell. 
G
Guo Sheng 已提交
473 474

    Returns:
F
Feiyu Chan 已提交
475 476 477 478 479 480 481 482 483 484
        (outputs, final_states)
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested 
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is 
            `[time_steps, batch_size, hidden_size]`, else 
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same 
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.
G
Guo Sheng 已提交
485 486 487 488 489 490
            

    Examples:

        .. code-block:: python

F
Feiyu Chan 已提交
491 492 493 494 495 496 497
            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
498
            outputs, final_states = paddle.fluid.layers.rnn(cell, inputs, prev_h) 
F
Feiyu Chan 已提交
499

G
Guo Sheng 已提交
500
    """
J
Jiabin Yang 已提交
501
    if _non_static_mode():
F
Feiyu Chan 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        return _rnn_dynamic_graph(cell, inputs, initial_states, sequence_length,
                                  time_major, is_reverse, **kwargs)
    else:
        return _rnn_static_graph(cell, inputs, initial_states, sequence_length,
                                 time_major, is_reverse, **kwargs)


class ArrayWrapper(object):
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

517 518 519
    def __getitem__(self, item):
        return self.array.__getitem__(item)

F
Feiyu Chan 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = nn.elementwise_mul(new_state, step_mask, axis=0) \
              + nn.elementwise_mul(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return nn.transpose(x, perm)


def _rnn_dynamic_graph(cell,
                       inputs,
                       initial_states=None,
                       sequence_length=None,
                       time_major=False,
                       is_reverse=False,
                       **kwargs):
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

544 545 546 547
    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0)

F
Feiyu Chan 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype)
        mask = nn.transpose(mask, [1, 0])

    if is_reverse:
        inputs = map_structure(lambda x: tensor.reverse(x, axis=[0]), inputs)
        mask = tensor.reverse(mask, axis=[0]) \
            if sequence_length is not None else None

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
            new_states = map_structure(
                partial(
                    _maybe_copy, step_mask=mask[i]), states, new_states)
        states = new_states
        outputs = map_structure(lambda x: ArrayWrapper(x),
                                step_outputs) if i == 0 else map_structure(
                                    lambda x, x_array: x_array.append(x),
                                    step_outputs, outputs)

    final_outputs = map_structure(
        lambda x: nn.stack(x.array, axis=time_step_index),
        outputs)

    if is_reverse:
        final_outputs = map_structure(
            lambda x: tensor.reverse(x, axis=time_step_index),
            final_outputs)

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(cell,
                      inputs,
                      initial_states=None,
                      sequence_length=None,
                      time_major=False,
                      is_reverse=False,
                      **kwargs):
X
Xing Wu 已提交
596 597 598 599 600 601 602
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(input_x, 'inputs[' + str(i) + ']',
                                     ['float32', 'float64'], 'rnn')
    check_type(initial_states, 'initial_states',
               (Variable, list, tuple, type(None)), 'rnn')
X
Xing Wu 已提交
603

X
Xing Wu 已提交
604 605
    check_type(sequence_length, 'sequence_length', (Variable, type(None)),
               'rnn')
G
Guo Sheng 已提交
606 607 608 609 610 611

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
612 613
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0)
G
Guo Sheng 已提交
614 615 616 617 618 619 620
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length:
        max_seq_len = nn.shape(flatten(inputs)[0])[0]
621
        mask = sequence_lod.sequence_mask(
G
Guo Sheng 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635
            sequence_length,
            maxlen=max_seq_len,
            dtype=flatten(initial_states)[0].dtype)
        mask = nn.transpose(mask, [1, 0])
    if is_reverse:
        inputs = map_structure(lambda x: tensor.reverse(x, axis=[0]), inputs)
        mask = tensor.reverse(mask, axis=[0]) if sequence_length else None

    # StaticRNN
    rnn = control_flow.StaticRNN()
    with rnn.step():
        inputs = map_structure(rnn.step_input, inputs)
        states = map_structure(rnn.memory, initial_states)
        copy_states = map_structure(lambda x: x, states)
H
Huihuang Zheng 已提交
636
        outputs, new_states = cell(inputs, copy_states, **kwargs)
G
Guo Sheng 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        assert_same_structure(states, new_states)
        if sequence_length:
            step_mask = rnn.step_input(mask)
            new_states = map_structure(
                partial(
                    _maybe_copy, step_mask=step_mask), states, new_states)

        map_structure(rnn.update_memory, states, new_states)
        flat_outputs = flatten(outputs)
        map_structure(rnn.step_output, outputs)
        map_structure(rnn.step_output, new_states)

    rnn_out = rnn()
    final_outputs = rnn_out[:len(flat_outputs)]
    final_outputs = pack_sequence_as(outputs, final_outputs)
    final_states = map_structure(lambda x: x[-1], rnn_out[len(flat_outputs):])
    final_states = pack_sequence_as(new_states, final_states)

    if is_reverse:
        final_outputs = map_structure(lambda x: tensor.reverse(x, axis=[0]),
                                      final_outputs)

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


F
Feiyu Chan 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
def birnn(cell_fw,
          cell_bw,
          inputs,
          initial_states=None,
          sequence_length=None,
          time_major=False,
          **kwargs):
    """
    birnn creates a bidirectional recurrent neural network specified by 
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()` 
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to 
    the maximum length of `inputs` and then concat the ouputs for both RNNs
    along the last axis.

    Arguments:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences. 
            If time_major is True, the shape is 
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of 
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to 
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64 
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as 
            padded sequences. In each input sequence, elements whose time step 
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell. 

    Returns:
        (outputs, final_states)
        outputs (Tensor): the outputs of the bidirectional RNN. It is the 
            concatenation of the outputs from the forward RNN and backward 
            RNN along the last axis. 
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward 
            cell and backward cell.        

    Examples:

        .. code-block:: python
            
            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
724
            outputs, final_states = paddle.fluid.layers.birnn(
F
Feiyu Chan 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
                cell_fw, cell_bw, inputs, initial_states)
        
    """
    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0)
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0)
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(cell_fw,
                                inputs,
                                states_fw,
                                sequence_length,
                                time_major=time_major,
                                **kwargs)

    outputs_bw, states_bw = rnn(cell_bw,
                                inputs,
                                states_bw,
                                sequence_length,
                                time_major=time_major,
                                is_reverse=True,
                                **kwargs)

    outputs = map_structure(lambda x, y: tensor.concat([x, y], -1), outputs_fw,
                            outputs_bw)

    final_states = (states_fw, states_bw)
    return outputs, final_states


G
Guo Sheng 已提交
757 758
class Decoder(object):
    """
759
	:api_attr: Static Graph
S
swtkiwi 已提交
760

G
Guo Sheng 已提交
761 762 763 764 765 766 767 768
    Decoder is the base class for any decoder instance used in `dynamic_decode`.
    It provides interface for output generation for one time step, which can be
    used to generate sequences. 

    The key abstraction provided by Decoder is:

    1. :code:`(initial_input, initial_state, finished) = initialize(inits)` ,
    which generates the input and state for the first decoding step, and gives the
769
    initial status telling whether each sequence in the batch is finished.
G
Guo Sheng 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    It would be called once before the decoding iterations.

    2. :code:`(output, next_state, next_input, finished) = step(time, input, state)` ,
    which transforms the input and state to the output and new state, generates 
    input for the next decoding step, and emits the flag indicating finished status.
    It is the main part for each decoding iteration.

    3. :code:`(final_outputs, final_state) = finalize(outputs, final_state, sequence_lengths)` ,
    which revises the outputs(stack of all time steps' output) and final state(state from the
    last decoding step) to get the counterpart for special usage.
    Not necessary to be implemented if no need to revise the stacked outputs and
    state from the last decoding step. If implemented, it would be called after
    the decoding iterations.

    Decoder is more general compared to RNNCell, since the returned `next_input`
    and `finished` make it can determine the input and when to finish by itself
    when used in dynamic decoding. Decoder always wraps a RNNCell instance though
    not necessary.
    """

    def initialize(self, inits):
791
        r"""
G
Guo Sheng 已提交
792 793 794 795 796 797
        Called once before the decoding iterations.

        Parameters:
            inits: Argument provided by the caller.

        Returns:
798
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
G
Guo Sheng 已提交
799 800 801 802 803 804
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        raise NotImplementedError

805
    def step(self, time, inputs, states, **kwargs):
806
        r"""
G
Guo Sheng 已提交
807 808 809 810 811 812 813
        Called per step of decoding. 

        Parameters:
            time(Variable): A Tensor with shape :math:`[1]` provided by the caller.
                The data type is int64.
            inputs(Variable): A (possibly nested structure of) tensor variable[s].
            states(Variable): A (possibly nested structure of) tensor variable[s].
814
            **kwargs: Additional keyword arguments, provided by the caller.
G
Guo Sheng 已提交
815 816 817 818 819 820 821 822 823 824 825 826
        
        Returns:
            tuple: A tuple( :code:(outputs, next_states, next_inputs, finished)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type must be same as the counterpart from input arguments. \
                `outputs` is a (possibly nested structure of) tensor variable[s]. \
                `finished` is a Tensor with bool data type.
        """
        raise NotImplementedError

    def finalize(self, outputs, final_states, sequence_lengths):
827
        r"""
G
Guo Sheng 已提交
828 829 830 831 832 833 834 835 836
        Called once after the decoding iterations if implemented.

        Parameters:
            outputs(Variable): A (possibly nested structure of) tensor variable[s].
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape 
                :math:`[time\_step, batch\_size, ...]` , which is done by the caller. 
            final_states(Variable): A (possibly nested structure of) tensor variable[s].
                It is the `next_states` returned by `decoder.step` at last decoding step,
T
tianshuo78520a 已提交
837
                thus has the same structure, shape and data type with states at any time
G
Guo Sheng 已提交
838 839 840 841 842 843 844 845 846
                step.

        Returns:
            tuple: A tuple( :code:`(final_outputs, final_states)` ). \
                `final_outputs` and `final_states` both are a (possibly nested \
                structure of) tensor variable[s].
        """
        raise NotImplementedError

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    @property
    def tracks_own_finished(self):
        """
        Describes whether the Decoder keeps track of finished states by itself.

        `decoder.step()` would emit a bool `finished` value at each decoding
        step. The emited `finished` can be used to determine whether every
        batch entries is finished directly, or it can be combined with the
        finished tracker keeped in `dynamic_decode` by performing a logical OR
        to take the already finished into account.

        If `False`, the latter would be took when performing `dynamic_decode`,
        which is the default. Otherwise, the former would be took, which uses
        the finished value emited by the decoder as all batch entry finished
        status directly, and it is the case when batch entries might be
        reordered such as beams in BeamSearchDecoder.

        Returns:
            bool: A python bool `False`.
        """
        return False

G
Guo Sheng 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886

class BeamSearchDecoder(Decoder):
    """
    Decoder with beam search decoding strategy. It wraps a cell to get probabilities,
    and follows a beam search step to calculate scores and select candidate
    token ids for each decoding step.

    Please refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **NOTE** When decoding with beam search, the `inputs` and `states` of cell
    would be tiled to `beam_size` (unsqueeze and tile), resulting to shapes like
    `[batch_size * beam_size, ...]` , which is built into `BeamSearchDecoder` and
    done automatically. Thus any other tensor with shape `[batch_size, ...]` used
    in `cell.call` needs to be tiled manually first, which can be completed by using
    :code:`BeamSearchDecoder.tile_beam_merge_with_batch` . The most common case
    for this is the encoder output in attention mechanism.

887 888 889
    Returns:
        BeamSearchDecoder: An instance of decoder which can be used in \
            `paddle.nn.dynamic_decode` to implement decoding. 
G
Guo Sheng 已提交
890 891 892 893 894

    Examples:

        .. code-block:: python
            
895 896 897 898 899 900 901
            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
G
Guo Sheng 已提交
902 903 904 905 906 907
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
908

G
Guo Sheng 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921
    """

    def __init__(self,
                 cell,
                 start_token,
                 end_token,
                 beam_size,
                 embedding_fn=None,
                 output_fn=None):
        """
        Constructor of BeamSearchDecoder.

        Parameters:
922
            cell(RNNCellBase): An instance of `RNNCellBase` or object with the same interface.
G
Guo Sheng 已提交
923 924 925 926 927 928
            start_token(int): The start token id.
            end_token(int): The end token id.
            beam_size(int): The beam width used in beam search.
            embedding_fn(optional): A callable to apply to selected candidate ids. 
                Mostly it is an embedding layer to transform ids to embeddings,
                and the returned value acts as the `input` argument for `cell.call`.
T
tianshuo78520a 已提交
929
                If not provided, the id to embedding transformation must be built into
G
Guo Sheng 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942
                `cell.call`. Default None.
            output_fn(optional): A callable to apply to the cell's output prior to
                calculate scores and select candidate token ids. Default None.
        """
        self.cell = cell
        self.embedding_fn = embedding_fn
        self.output_fn = output_fn
        self.start_token = start_token
        self.end_token = end_token
        self.beam_size = beam_size

    @staticmethod
    def tile_beam_merge_with_batch(x, beam_size):
943
        r"""
G
Guo Sheng 已提交
944 945 946 947 948 949 950 951
        Tile the batch dimension of a tensor. Specifically, this function takes
        a tensor t shaped `[batch_size, s0, s1, ...]` composed of minibatch 
        entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
        `[batch_size * beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
T
tianshuo78520a 已提交
952
            x(Variable): A tensor with shape `[batch_size, ...]`. The data type
G
Guo Sheng 已提交
953 954 955 956 957 958 959
                should be float32, float64, int32, int64 or bool.
            beam_size(int): The beam width used in beam search.

        Returns:
            Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.
        """
960 961
        check_type(x, 'x', (Variable),
                   'BeamSearchDecoder.tile_beam_merge_with_batch')
G
Guo Sheng 已提交
962 963 964
        x = nn.unsqueeze(x, [1])  # [batch_size, 1, ...]
        expand_times = [1] * len(x.shape)
        expand_times[1] = beam_size
965
        x = paddle.tile(x, expand_times)  # [batch_size, beam_size, ...]
G
Guo Sheng 已提交
966 967 968 969 970 971 972 973 974 975 976 977
        x = nn.transpose(x, list(range(2, len(x.shape))) +
                         [0, 1])  # [..., batch_size, beam_size]
        # use 0 to copy to avoid wrong shape
        x = nn.reshape(
            x, shape=[0] *
            (len(x.shape) - 2) + [-1])  # [..., batch_size * beam_size]
        x = nn.transpose(
            x, [len(x.shape) - 1] +
            list(range(0, len(x.shape) - 1)))  # [batch_size * beam_size, ...]
        return x

    def _split_batch_beams(self, x):
978
        r"""
G
Guo Sheng 已提交
979 980 981 982
        Reshape a tensor with shape `[batch_size * beam_size, ...]` to a new
        tensor with shape `[batch_size, beam_size, ...]`. 

        Parameters:
T
tianshuo78520a 已提交
983
            x(Variable): A tensor with shape `[batch_size * beam_size, ...]`. The
G
Guo Sheng 已提交
984 985 986 987 988 989
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.     
        """
990
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._split_batch_beams')
G
Guo Sheng 已提交
991
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
992
        return nn.reshape(x, shape=[-1, self.beam_size] + list(x.shape[1:]))
G
Guo Sheng 已提交
993 994

    def _merge_batch_beams(self, x):
995
        r"""
G
Guo Sheng 已提交
996 997 998 999
        Reshape a tensor with shape `[batch_size, beam_size, ...]` to a new
        tensor with shape `[batch_size * beam_size, ...]`. 

        Parameters:
T
tianshuo78520a 已提交
1000
            x(Variable): A tensor with shape `[batch_size, beam_size, ...]`. The
G
Guo Sheng 已提交
1001 1002 1003 1004 1005 1006
                data type should be float32, float64, int32, int64 or bool.

        Returns:
            Variable: A tensor with shape `[batch_size * beam_size, ...]`, whose \
                data type is same as `x`.     
        """
1007
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._merge_batch_beams')
G
Guo Sheng 已提交
1008
        # TODO: avoid fake shape in compile-time like tile_beam_merge_with_batch
1009
        return nn.reshape(x, shape=[-1] + list(x.shape[2:]))
G
Guo Sheng 已提交
1010 1011

    def _expand_to_beam_size(self, x):
1012
        r"""
G
Guo Sheng 已提交
1013 1014 1015 1016 1017 1018 1019
        This function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed
        of minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a
        shape `[batch_size, beam_size, s0, s1, ...]` composed of minibatch entries
        `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
        `beam_size` times.

        Parameters:
1020 1021
            x(Variable): A tensor with shape `[batch_size, ...]`, The data type
                should be float32, float64, int32, int64 or bool.
G
Guo Sheng 已提交
1022 1023 1024 1025 1026

        Returns:
            Variable: A tensor with shape `[batch_size, beam_size, ...]`, whose \
                data type is same as `x`.
        """
1027
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._expand_to_beam_size')
G
Guo Sheng 已提交
1028 1029 1030
        x = nn.unsqueeze(x, [1])
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
1031
        x = paddle.tile(x, expand_times)
G
Guo Sheng 已提交
1032 1033 1034
        return x

    def _mask_probs(self, probs, finished):
1035
        r"""
G
Guo Sheng 已提交
1036 1037 1038 1039 1040
        Mask log probabilities. It forces finished beams to allocate all probability
        mass to eos and unfinished beams to remain unchanged.

        Parameters:
            probs(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
X
Xing Wu 已提交
1041
                representing the log probabilities. Its data type should be float32 or float64.
G
Guo Sheng 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
            finished(Variable): A tensor with shape `[batch_size, beam_size]`,
                representing the finished status for all beams. Its data type
                should be bool.

        Returns:
            Variable: A tensor with the same shape and data type as `x`, \
                where unfinished beams stay unchanged and finished beams are \
                replaced with a tensor with all probability on the EOS token.
        """
1051 1052 1053
        check_type(probs, 'probs', (Variable), 'BeamSearchDecoder._mask_probs')
        check_type(finished, 'finished', (Variable),
                   'BeamSearchDecoder._mask_probs')
G
Guo Sheng 已提交
1054 1055 1056
        # TODO: use where_op
        finished = tensor.cast(finished, dtype=probs.dtype)
        probs = nn.elementwise_mul(
1057
            paddle.tile(nn.unsqueeze(finished, [2]), [1, 1, self.vocab_size]),
G
Guo Sheng 已提交
1058 1059 1060 1061 1062 1063
            self.noend_mask_tensor,
            axis=-1) - nn.elementwise_mul(
                probs, (finished - 1), axis=0)
        return probs

    def _gather(self, x, indices, batch_size):
1064
        r"""
G
Guo Sheng 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        Gather from the tensor `x` using `indices`.

        Parameters:
            x(Variable): A tensor with shape `[batch_size, beam_size, ...]`.
            indices(Variable): A `int64` tensor with shape `[batch_size, beam_size]`,
                representing the indices that we use to gather.
            batch_size(Variable): A tensor with shape `[1]`. Its data type should
                be int32 or int64.

        Returns:
            Variable: A tensor with the same shape and data type as `x`, \
                representing the gathered tensor.
        """
1078 1079 1080 1081
        check_type(x, 'x', (Variable), 'BeamSearchDecoder._gather')
        check_type(indices, 'indices', (Variable), 'BeamSearchDecoder._gather')
        check_type(batch_size, 'batch_size', (Variable),
                   'BeamSearchDecoder._gather')
G
Guo Sheng 已提交
1082 1083 1084 1085
        # TODO: compatibility of int32 and int64
        batch_size = tensor.cast(
            batch_size,
            indices.dtype) if batch_size.dtype != indices.dtype else batch_size
1086
        batch_size.stop_gradient = True  # TODO: remove this
1087
        batch_pos = paddle.tile(
G
Guo Sheng 已提交
1088 1089 1090 1091 1092
            nn.unsqueeze(
                tensor.range(
                    0, batch_size, 1, dtype=indices.dtype), [1]),
            [1, self.beam_size])
        topk_coordinates = nn.stack([batch_pos, indices], axis=2)
1093
        topk_coordinates.stop_gradient = True
G
Guo Sheng 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        return nn.gather_nd(x, topk_coordinates)

    class OutputWrapper(
            collections.namedtuple("OutputWrapper",
                                   ("scores", "predicted_ids", "parent_ids"))):
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes scores, predicted_ids, parent_ids as fields.
        """
        pass

    class StateWrapper(
            collections.namedtuple(
                "StateWrapper",
                ("cell_states", "log_probs", "finished", "lengths"))):
        """
        The structure for the argument `states` of `decoder.step`.
        A namedtuple includes cell_states, log_probs, finished, lengths as fields.
        """
        pass

    def initialize(self, initial_cell_states):
1116
        r"""
G
Guo Sheng 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125
        Initialize the BeamSearchDecoder.

        Parameters:
            initial_cell_states(Variable): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` is a tensor t filled by `start_token` with shape \
1126
                `[batch_size, beam_size]` when `embedding_fn` is None, or the \
G
Guo Sheng 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
                returned value of `embedding_fn(t)` when `embedding_fn` is provided. \
                `initial_states` is a nested structure(namedtuple including cell_states, \
                log_probs, finished, lengths as fields) of tensor variables, where \
                `log_probs, finished, lengths` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, bool, int64`. \
                cell_states has a value with the same structure as the input \
                argument `initial_cell_states` but with tiled shape `[batch_size, beam_size, ...]`. \
                `finished` is a `bool` tensor filled by False with shape `[batch_size, beam_size]`.
        """
        self.kinf = 1e9
        state = flatten(initial_cell_states)[0]
        self.batch_size = nn.shape(state)[0]

        self.start_token_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.start_token)
        self.end_token_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.end_token)

        init_cell_states = map_structure(self._expand_to_beam_size,
                                         initial_cell_states)
1147 1148 1149 1150 1151
        init_inputs = paddle.full(
            shape=[self.batch_size, self.beam_size],
            fill_value=self.start_token_tensor,
            dtype=self.start_token_tensor.dtype)
        log_probs = paddle.tile(
G
Guo Sheng 已提交
1152 1153 1154 1155
            tensor.assign(
                np.array(
                    [[0.] + [-self.kinf] * (self.beam_size - 1)],
                    dtype="float32")), [self.batch_size, 1])
1156 1157
        if paddle.get_default_dtype() == "float64":
            log_probs = tensor.cast(log_probs, "float64")
G
Guo Sheng 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        # TODO: remove the restriction of force_cpu
        init_finished = tensor.fill_constant_batch_size_like(
            input=state,
            shape=[-1, self.beam_size],
            dtype="bool",
            value=False,
            force_cpu=True)
        init_lengths = tensor.zeros_like(init_inputs)
        init_inputs = self.embedding_fn(
            init_inputs) if self.embedding_fn else init_inputs
        return init_inputs, self.StateWrapper(init_cell_states, log_probs,
                                              init_finished,
                                              init_lengths), init_finished

    def _beam_search_step(self, time, logits, next_cell_states, beam_state):
1173
        r"""
G
Guo Sheng 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        Calculate scores and select candidate token ids.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            logits(Variable): A tensor with shape `[batch_size, beam_size, vocab_size]`,
                representing the logits at the current time step. Its data type is float32.
            next_cell_states(Variable): A (possibly nested structure of) tensor variable[s].
                It has the same structure, shape and data type as the `cell_states` of 
                `initial_states` returned by `initialize()`. It represents the next state 
                from the cell.
            beam_state(Variable): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
1188
                `step()` for the others.
G
Guo Sheng 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        
        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state)` ). \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`.
                `beam_search_state` has the same structure, shape and data type \
                as the input argument `beam_state`.

        """
        self.vocab_size = logits.shape[-1]
        self.vocab_size_tensor = tensor.fill_constant(
            shape=[1], dtype="int64", value=self.vocab_size)
        noend_array = [-self.kinf] * self.vocab_size
        noend_array[self.end_token] = 0
1205

G
Guo Sheng 已提交
1206
        self.noend_mask_tensor = tensor.assign(np.array(noend_array, "float32"))
1207 1208 1209
        if paddle.get_default_dtype() == "float64":
            self.noend_mask_tensor = tensor.cast(self.noend_mask_tensor,
                                                 "float64")
G
Guo Sheng 已提交
1210 1211 1212 1213 1214 1215 1216 1217

        step_log_probs = nn.log(nn.softmax(logits))
        step_log_probs = self._mask_probs(step_log_probs, beam_state.finished)
        log_probs = nn.elementwise_add(
            x=step_log_probs, y=beam_state.log_probs, axis=0)
        # TODO: length penalty
        scores = log_probs
        scores = nn.reshape(scores, [-1, self.beam_size * self.vocab_size])
1218
        # TODO: add grad for topk then this beam search can be used to train
1219
        topk_scores, topk_indices = paddle.topk(x=scores, k=self.beam_size)
G
Guo Sheng 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        beam_indices = nn.elementwise_floordiv(topk_indices,
                                               self.vocab_size_tensor)
        token_indices = nn.elementwise_mod(topk_indices, self.vocab_size_tensor)
        next_log_probs = self._gather(
            nn.reshape(log_probs, [-1, self.beam_size * self.vocab_size]),
            topk_indices, self.batch_size)
        next_cell_states = map_structure(
            lambda x: self._gather(x, beam_indices, self.batch_size),
            next_cell_states)
        next_finished = self._gather(beam_state.finished, beam_indices,
                                     self.batch_size)
        next_lengths = self._gather(beam_state.lengths, beam_indices,
                                    self.batch_size)
        next_lengths = next_lengths + tensor.cast(
            nn.logical_not(next_finished), beam_state.lengths.dtype)
        next_finished = control_flow.logical_or(
            next_finished,
            control_flow.equal(token_indices, self.end_token_tensor))

        beam_search_output = self.OutputWrapper(topk_scores, token_indices,
                                                beam_indices)
        beam_search_state = self.StateWrapper(next_cell_states, next_log_probs,
                                              next_finished, next_lengths)
        return beam_search_output, beam_search_state

    def step(self, time, inputs, states, **kwargs):
1246
        r"""
G
Guo Sheng 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
        Perform a beam search decoding step, which uses `cell` to get probabilities,
        and follows a beam search step to calculate scores and select candidate
        token ids.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Variable): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Variable): A structure of tensor variables.
                It is same as the `initial_states` returned by `initialize()` for
                the first decoding step and `beam_search_state` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller. 
        
        Returns:
            tuple: A tuple( :code:`(beam_search_output, beam_search_state, next_inputs, finished)` ). \
                `beam_search_state` and `next_inputs` have the same structure, \
                shape and data type as the input arguments `states` and `inputs` separately. \
                `beam_search_output` is a namedtuple(including scores, predicted_ids, \
                parent_ids as fields) of tensor variables, where \
                `scores, predicted_ids, parent_ids` all has a tensor value shaped \
                `[batch_size, beam_size]` with data type `float32, int64, int64`. \
                `finished` is a `bool` tensor with shape `[batch_size, beam_size]`.
        """
        inputs = map_structure(self._merge_batch_beams, inputs)
        cell_states = map_structure(self._merge_batch_beams, states.cell_states)
        cell_outputs, next_cell_states = self.cell(inputs, cell_states,
                                                   **kwargs)
        cell_outputs = map_structure(self._split_batch_beams, cell_outputs)
        next_cell_states = map_structure(self._split_batch_beams,
                                         next_cell_states)

        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)

        beam_search_output, beam_search_state = self._beam_search_step(
            time=time,
            logits=cell_outputs,
            next_cell_states=next_cell_states,
            beam_state=states)
        finished = beam_search_state.finished
        sample_ids = beam_search_output.predicted_ids
1291
        sample_ids.stop_gradient = True
G
Guo Sheng 已提交
1292 1293 1294 1295 1296 1297
        next_inputs = self.embedding_fn(
            sample_ids) if self.embedding_fn else sample_ids

        return (beam_search_output, beam_search_state, next_inputs, finished)

    def finalize(self, outputs, final_states, sequence_lengths):
1298
        r"""
G
Guo Sheng 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        Use `gather_tree` to backtrace along the beam search tree and construct
        the full predicted sequences.

        Parameters:
            outputs(Variable): A structure(namedtuple) of tensor variables,
                The structure and data type is same as `output_dtype`.
                The tensor stacks all time steps' output thus has shape 
                `[time_step, batch_size, ...]`, which is done by the caller. 
            final_states(Variable): A structure(namedtuple) of tensor variables.
                It is the `next_states` returned by `decoder.step` at last
T
tianshuo78520a 已提交
1309
                decoding step, thus has the same structure, shape and data type
G
Guo Sheng 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                with states at any time step.
            sequence_lengths(Variable): An `int64` tensor shaped `[batch_size, beam_size]`.
                It contains sequence lengths for each beam determined during
                decoding.

        Returns:
            tuple: A tuple( :code:`(predicted_ids, final_states)` ). \
                `predicted_ids` is an `int64` tensor shaped \
                `[time_step, batch_size, beam_size]`. `final_states` is the same \
                as the input argument `final_states`.
        """
        predicted_ids = nn.gather_tree(outputs.predicted_ids,
                                       outputs.parent_ids)
        # TODO: use FinalBeamSearchDecoderOutput as output
        return predicted_ids, final_states

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    @property
    def tracks_own_finished(self):
        """
        BeamSearchDecoder reorders its beams and their finished state. Thus it
        conflicts with `dynamic_decode` function's tracking of finished states.
        Setting this property to true to avoid early stopping of decoding due
        to mismanagement of the finished state.

        Returns:
            bool: A python bool `True`.
        """
        return True

G
Guo Sheng 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
def _dynamic_decode_imperative(decoder,
                               inits=None,
                               max_step_num=None,
                               output_time_major=False,
                               impute_finished=False,
                               is_test=False,
                               return_length=False,
                               **kwargs):
    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
        new_state = nn.elementwise_mul(
            state, step_mask, axis=0) - nn.elementwise_mul(
                new_state, (step_mask - 1), axis=0)
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
        return new_state
S
swtkiwi 已提交
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
    inputs, states, finished = (initial_inputs, initial_states,
                                initial_finished)
    cond = control_flow.logical_not((nn.reduce_all(initial_finished)))
    sequence_lengths = tensor.cast(tensor.zeros_like(initial_finished), "int64")
    outputs = None

    step_idx = 0
    step_idx_tensor = tensor.fill_constant(
        shape=[1], dtype="int64", value=step_idx)
    while cond.numpy():
        (step_outputs, next_states, next_inputs, next_finished) = decoder.step(
            step_idx_tensor, inputs, states, **kwargs)
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since
            # beams would be reordered and the finished status of each
            # entry might change. Otherwise, perform logical OR which
            # would not change the already finished.
            next_finished = control_flow.logical_or(next_finished, finished)
            # To confirm states.finished/finished be consistent with
            # next_finished.
            tensor.assign(next_finished, finished)
J
Jiaqi Liu 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
            next_sequence_lengths = nn.elementwise_add(
                sequence_lengths,
                tensor.cast(
                    control_flow.logical_not(finished), sequence_lengths.dtype))
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, finished), states,
                    next_states)
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
            next_sequence_lengths = getattr(next_states, "lengths",
                                            sequence_lengths)

1403 1404 1405 1406 1407 1408
        outputs = map_structure(
            lambda x: ArrayWrapper(x),
            step_outputs) if step_idx == 0 else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs)
        inputs, states, finished, sequence_lengths = (
            next_inputs, next_states, next_finished, next_sequence_lengths)
G
Guo Sheng 已提交
1409

1410 1411
        control_flow.increment(x=step_idx_tensor, value=1.0, in_place=True)
        step_idx += 1
G
Guo Sheng 已提交
1412

1413
        cond = control_flow.logical_not(nn.reduce_all(finished))
1414 1415
        if max_step_num is not None and step_idx > max_step_num:
            break
G
Guo Sheng 已提交
1416

1417 1418
    final_outputs = map_structure(lambda x: nn.stack(x.array, axis=0), outputs)
    final_states = states
G
Guo Sheng 已提交
1419

1420 1421 1422 1423 1424
    try:
        final_outputs, final_states = decoder.finalize(
            final_outputs, final_states, sequence_lengths)
    except NotImplementedError:
        pass
G
Guo Sheng 已提交
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    if not output_time_major:
        final_outputs = map_structure(
            lambda x: nn.transpose(x, [1, 0] + list(range(2, len(x.shape)))),
            final_outputs)

    return (final_outputs, final_states,
            sequence_lengths) if return_length else (final_outputs,
                                                     final_states)


def _dynamic_decode_declarative(decoder,
                                inits=None,
                                max_step_num=None,
                                output_time_major=False,
                                impute_finished=False,
                                is_test=False,
                                return_length=False,
                                **kwargs):
G
Guo Sheng 已提交
1444 1445 1446
    initial_inputs, initial_states, initial_finished = decoder.initialize(inits)
    global_inputs, global_states, global_finished = (
        initial_inputs, initial_states, initial_finished)
1447
    global_finished.stop_gradient = True
G
Guo Sheng 已提交
1448
    step_idx = tensor.fill_constant(shape=[1], dtype="int64", value=0)
1449

G
Guo Sheng 已提交
1450 1451 1452 1453
    cond = control_flow.logical_not((nn.reduce_all(initial_finished)))
    if max_step_num is not None:
        max_step_num = tensor.fill_constant(
            shape=[1], dtype="int64", value=max_step_num)
1454
    while_op = control_flow.While(cond, is_test=is_test)
G
Guo Sheng 已提交
1455 1456

    sequence_lengths = tensor.cast(tensor.zeros_like(initial_finished), "int64")
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    sequence_lengths.stop_gradient = True

    if is_test:
        # for test, reuse inputs and states variables to save memory
        inputs = map_structure(lambda x: x, initial_inputs)
        states = map_structure(lambda x: x, initial_states)
    else:
        # inputs and states of all steps must be saved for backward and training
        inputs_arrays = map_structure(
            lambda x: control_flow.array_write(x, step_idx), initial_inputs)
        states_arrays = map_structure(
            lambda x: control_flow.array_write(x, step_idx), initial_states)
G
Guo Sheng 已提交
1469 1470 1471

    def _maybe_copy(state, new_state, step_mask):
        # TODO: use where_op
1472 1473 1474 1475 1476 1477 1478 1479 1480
        state_dtype = state.dtype
        if convert_dtype(state_dtype) in ["bool"]:
            state = tensor.cast(state, dtype="float32")
            new_state = tensor.cast(new_state, dtype="float32")
        if step_mask.dtype != state.dtype:
            step_mask = tensor.cast(step_mask, dtype=state.dtype)
            # otherwise, renamed bool gradients of would be summed up leading
            # to sum(bool) error.
            step_mask.stop_gradient = True
G
Guo Sheng 已提交
1481
        new_state = nn.elementwise_mul(
1482 1483 1484 1485
            state, step_mask, axis=0) - nn.elementwise_mul(
                new_state, (step_mask - 1), axis=0)
        if convert_dtype(state_dtype) in ["bool"]:
            new_state = tensor.cast(new_state, dtype=state_dtype)
G
Guo Sheng 已提交
1486 1487 1488 1489 1490
        return new_state

    def _transpose_batch_time(x):
        return nn.transpose(x, [1, 0] + list(range(2, len(x.shape))))

1491 1492 1493 1494 1495 1496 1497 1498
    def _create_array_out_of_while(dtype):
        current_block_idx = default_main_program().current_block_idx
        default_main_program().current_block_idx = default_main_program(
        ).current_block().parent_idx
        tensor_array = control_flow.create_array(dtype)
        default_main_program().current_block_idx = current_block_idx
        return tensor_array

G
Guo Sheng 已提交
1499 1500
    # While
    with while_op.block():
1501 1502 1503 1504 1505 1506 1507
        if not is_test:
            inputs = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
                inputs_arrays)
            states = map_structure(
                lambda array: control_flow.array_read(array, step_idx),
                states_arrays)
G
Guo Sheng 已提交
1508 1509
        (outputs, next_states, next_inputs,
         next_finished) = decoder.step(step_idx, inputs, states, **kwargs)
1510 1511 1512 1513 1514 1515 1516
        if not decoder.tracks_own_finished:
            # BeamSearchDecoder would track it own finished, since beams would
            # be reordered and the finished status of each entry might change.
            # Otherwise, perform logical OR which would not change the already
            # finished.
            next_finished = control_flow.logical_or(next_finished,
                                                    global_finished)
J
Jiaqi Liu 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
            next_sequence_lengths = nn.elementwise_add(
                sequence_lengths,
                tensor.cast(
                    control_flow.logical_not(global_finished),
                    sequence_lengths.dtype))
            if impute_finished:  # rectify the states for the finished.
                next_states = map_structure(
                    lambda x, y: _maybe_copy(x, y, global_finished),
                    states,
                    next_states, )
        else:
            warnings.warn(
                "`next_states` has no `lengths` attribute, the returned `sequence_lengths` would be all zeros."
            ) if not hasattr(next_states, "lengths") else None
            next_sequence_lengths = getattr(next_states, "lengths",
                                            sequence_lengths)
1533 1534 1535 1536 1537

        # create tensor array in global block after dtype[s] of outputs can be got
        outputs_arrays = map_structure(
            lambda x: _create_array_out_of_while(x.dtype), outputs)

G
Guo Sheng 已提交
1538 1539 1540 1541
        map_structure(
            lambda x, x_array: control_flow.array_write(
                x, i=step_idx, array=x_array), outputs, outputs_arrays)
        control_flow.increment(x=step_idx, value=1.0, in_place=True)
1542 1543 1544 1545
        # update the global_finished first, since it might be also in states of
        # decoder, which otherwise would write a stale finished status to array
        tensor.assign(next_finished, global_finished)
        tensor.assign(next_sequence_lengths, sequence_lengths)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        if is_test:
            map_structure(tensor.assign, next_inputs, global_inputs)
            map_structure(tensor.assign, next_states, global_states)
        else:
            map_structure(
                lambda x, x_array: control_flow.array_write(
                    x, i=step_idx, array=x_array), next_inputs, inputs_arrays)
            map_structure(
                lambda x, x_array: control_flow.array_write(
                    x, i=step_idx, array=x_array), next_states, states_arrays)
G
Guo Sheng 已提交
1556 1557
        if max_step_num is not None:
            control_flow.logical_and(
1558
                control_flow.logical_not(nn.reduce_all(global_finished)),
G
Guo Sheng 已提交
1559 1560
                control_flow.less_equal(step_idx, max_step_num), cond)
        else:
1561
            control_flow.logical_not(nn.reduce_all(global_finished), cond)
G
Guo Sheng 已提交
1562 1563 1564 1565

    final_outputs = map_structure(
        lambda array: tensor.tensor_array_to_tensor(
            array, axis=0, use_stack=True)[0], outputs_arrays)
1566 1567 1568 1569 1570 1571
    if is_test:
        final_states = global_states
    else:
        final_states = map_structure(
            lambda array: control_flow.array_read(array, step_idx),
            states_arrays)
G
Guo Sheng 已提交
1572 1573 1574

    try:
        final_outputs, final_states = decoder.finalize(
1575
            final_outputs, final_states, sequence_lengths)
G
Guo Sheng 已提交
1576 1577 1578 1579 1580 1581
    except NotImplementedError:
        pass

    if not output_time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

1582 1583 1584 1585 1586
    return (final_outputs, final_states,
            sequence_lengths) if return_length else (final_outputs,
                                                     final_states)


1587 1588 1589 1590 1591 1592 1593 1594
def dynamic_decode(decoder,
                   inits=None,
                   max_step_num=None,
                   output_time_major=False,
                   impute_finished=False,
                   is_test=False,
                   return_length=False,
                   **kwargs):
1595
    r"""
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
    Tensor indicating finished status contains all True values or the number of
    decoding step reaches to :attr:`max_step_num`.

    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Parameters:
        decoder(Decoder): An instance of `Decoder`.
        inits(object, optional): Argument passed to `decoder.initialize`. 
            Default `None`.
        max_step_num(int, optional): The maximum number of steps. If not provided,
            decode until the decoder is fully done, or in other words, the returned
            Tensor by :code:`decoder.step()` indicating finished status contains
            all True. Default `None`.
        output_time_major(bool, optional): Indicate the data layout of Tensor included
            in the final outputs(the first returned value of this method). If
            attr:`False`, the data layout would be batch major with shape
            `[batch_size, seq_len, ...]`.  If attr:`True`, the data layout would
            be time major with shape `[seq_len, batch_size, ...]`. Default: `False`.
J
Jiaqi Liu 已提交
1617 1618 1619 1620 1621 1622 1623
        impute_finished(bool, optional): If `True` and `decoder.tracks_own_finished`
            is False, then states get copied through for batch entries which are
            marked as finished, which differs with the unfinished using the new states
            returned by :code:`decoder.step()` and ensures that the final states have
            the correct values. Otherwise, states wouldn't be copied through when
            finished. If the returned `final_states` is needed, it should be set as
            True, which causes some slowdown. Default `False`.
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        is_test(bool, optional): A flag indicating whether to use test mode. In
            test mode, it is more memory saving. Default `False`.
        return_length(bool, optional):  A flag indicating whether to return an
            extra Tensor variable in the output tuple, which stores the actual
            lengths of all decoded sequences. Default `False`.
        **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`. 

    Returns:
        tuple: A tuple( :code:`(final_outputs, final_states, sequence_lengths)` ) \
            when `return_length` is True, otherwise a tuple( :code:`(final_outputs, final_states)` ). \
            The final outputs and states, both are Tensor or nested structure of Tensor. \
            `final_outputs` has the same structure and data types as the :code:`outputs` \
            returned by :code:`decoder.step()` , and each Tenser in `final_outputs` \
            is the stacked of all decoding steps' outputs, which might be revised \
            by :code:`decoder.finalize()` if the decoder has implemented `finalize`. \
            `final_states` is the counterpart at last time step of initial states \
            returned by :code:`decoder.initialize()` , thus has the same structure \
            with it and has tensors with same shapes and data types. `sequence_lengths` \
            is an `int64` tensor with the same shape as `finished` returned \
            by :code:`decoder.initialize()` , and it stores the actual lengths of \
            all decoded sequences.
            

    Examples:

        .. code-block:: python
            
            import numpy as np
            import paddle
            from paddle.nn import BeamSearchDecoder, dynamic_decode
            from paddle.nn import GRUCell, Linear, Embedding
            trg_embeder = Embedding(100, 32)
            output_layer = Linear(32, 32)
            decoder_cell = GRUCell(input_size=32, hidden_size=32)
            decoder = BeamSearchDecoder(decoder_cell,
                                        start_token=0,
                                        end_token=1,
                                        beam_size=4,
                                        embedding_fn=trg_embeder,
                                        output_fn=output_layer)
            encoder_output = paddle.ones((4, 8, 32), dtype=paddle.get_default_dtype())
            outputs = dynamic_decode(decoder=decoder,
                                    inits=decoder_cell.get_initial_states(encoder_output),
                                    max_step_num=10)
    """
J
Jiabin Yang 已提交
1669
    if _non_static_mode():
1670 1671 1672 1673 1674 1675 1676 1677 1678
        return _dynamic_decode_imperative(decoder, inits, max_step_num,
                                          output_time_major, impute_finished,
                                          is_test, return_length, **kwargs)
    else:
        return _dynamic_decode_declarative(decoder, inits, max_step_num,
                                           output_time_major, impute_finished,
                                           is_test, return_length, **kwargs)


1679 1680 1681 1682 1683 1684 1685 1686
class DecodeHelper(object):
    """
    DecodeHelper is the base class for any helper instance used in `BasicDecoder`.
    It provides interface to implement sampling and produce inputs for the next
    time step in dynamic decoding.
    """

    def initialize(self):
1687
        r"""
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        DecodeHelper initialization to produce inputs for the first decoding step
        and give the initial status telling whether each sequence in the batch
        is finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
        pass

    def sample(self, time, outputs, states):
        """
        Perform sampling with some strategies according to `outputs`. It is the
        partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor representing the sampled ids.
        """
        pass

    def next_inputs(self, time, outputs, states, sample_ids):
1721
        r"""
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
        Produce the inputs and states for next time step and give status telling
        whether each minibatch entry is finished. It is called after `sample` in
        `BasicDecoder.step`. It is the partial of `BasicDecoder.step`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s], and the structure, shape and \
                data type of `next_states` must be same as the input argument \
                `states`. `finished` is a bool tensor with shape `[batch_size]`.
        """
        pass


class TrainingHelper(DecodeHelper):
    """
    TrainingHelper is a subclass of DecodeHelper. It is a decoding helper
    slicing from the full sequence inputs as the inputs for corresponding
    step. And it uses `argmax` to sample from the outputs of `cell.call()`.

    Since the needs of sequence inputs, it is used mostly for teach-forcing MLE
    (maximum likelihood) training, and the sampled would not be used.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            trg_seq_length = fluid.data(name="trg_seq_length",
                                        shape=[None],
                                        dtype="int64")
            helper = layers.TrainingHelper(trg_emb, trg_seq_length)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper)
            outputs = layers.dynamic_decode(
                decoder,
                inits=decoder_cell.get_initial_states(trg_emb),
                is_test=False)
    """

    def __init__(self, inputs, sequence_length, time_major=False):
        """
        Constructor of TrainingHelper.

        Parameters:
            inputs(Variable): A (possibly nested structure of) tensor variable[s]. 
                The shape of tensor should be `[batch_size, sequence_length, ...]`
                for `time_major == False` or `[sequence_length, batch_size, ...]`
                for `time_major == True`. It represents the inputs to be sliced
                from at every decoding step.
            sequence_length(Variable): A tensor with shape `[batch_size]`.
                It stores real length of each instance in `inputs`, by which we
                can label the finished status of each instance at every decoding
                step.
            time_major(bool, optional): Indicate the data layout of Tensor included
                in `inputs`. If `False`, the data layout would be batch major with
                shape `[batch_size, sequence_length, ...]`.  If `True`, the data
                layout would be time major with shape `[sequence_length, batch_size, ...]`.
                Default: `False`.
        """
        self.inputs = inputs
        self.sequence_length = sequence_length
        self.time_major = time_major
        # extend inputs to avoid to slice out of range in `next_inputs`
        # may be easier and have better performance than condition_op
        self.inputs_ = map_structure(
            lambda x: nn.pad(x,
                             paddings=([0, 1] + [0, 0] * (len(x.shape) - 1))
                             if time_major else ([0, 0, 0, 1] + [0, 0] *
                                                 (len(x.shape) - 2))),
            self.inputs)

    def initialize(self):
1810
        r"""
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
        TrainingHelper initialization produces inputs for the first decoding
        step by slicing at the first time step of full sequence inputs, and it
        gives initial status telling whether each sequence in the batch is
        finished. It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is a (possibly nested structure of) tensor \
                variable[s], and the tensor's shape is `[batch_size, ...]`. \
                `initial_finished` is a bool tensor with shape `[batch_size]`.
        """
        init_finished = control_flow.equal(
            self.sequence_length,
            tensor.fill_constant(
                shape=[1], dtype=self.sequence_length.dtype, value=0))
        # TODO: support zero length
        init_inputs = map_structure(
            lambda x: x[0] if self.time_major else x[:, 0], self.inputs)
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
1832
        r"""
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        Perform sampling by using `argmax` according to the `outputs`. Mostly
        the sampled ids would not be used since the inputs for next decoding
        step would be got by slicing.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`. 
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
1855
        r"""
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
        Generate inputs for the next decoding step by slicing at corresponding
        step of the full sequence inputs. Simultaneously, produce the states
        for next time step by directly using the input `states` and emit status
        telling whether each minibatch entry reaches to the corresponding length.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
        # TODO: compatibility of int32 and int64
        time = tensor.cast(
            time,
            "int32") if convert_dtype(time.dtype) not in ["int32"] else time
        if self.sequence_length.dtype != time.dtype:
            self.sequence_length = tensor.cast(self.sequence_length, time.dtype)
        next_time = time + 1
        finished = control_flow.less_equal(self.sequence_length, next_time)

        def _slice(x):  # TODO: use Variable.__getitem__
            axes = [0 if self.time_major else 1]
            return nn.squeeze(
                nn.slice(
                    x, axes=axes, starts=[next_time], ends=[next_time + 1]),
                axes=axes)

        next_inputs = map_structure(_slice, self.inputs_)
        return finished, next_inputs, states


class GreedyEmbeddingHelper(DecodeHelper):
    """
    GreedyEmbeddingHelper is a subclass of DecodeHelper. It is a decoding helper
    uses the argmax of the output (treated as logits) and passes the results
    through an embedding layer to get inputs for the next decoding step.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.GreedyEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self, embedding_fn, start_tokens, end_token):
1932
        r"""
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        Constructor of GreedyEmbeddingHelper.

        Parameters:
            embedding_fn(callable): A functor to apply on the argmax results. 
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        self.embedding_fn = embedding_fn
        self.start_tokens = start_tokens
        self.end_token = tensor.fill_constant(
            shape=[1], dtype="int64", value=end_token)

    def initialize(self):
1957
        r"""
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        GreedyEmbeddingHelper initialization produces inputs for the first decoding
        step by using `start_tokens` of the constructor, and gives initial
        status telling whether each sequence in the batch is finished. 
        It is the partial of the initialization of `BasicDecoder`.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_finished)` ). \
                `initial_inputs` is same as `start_tokens` of the constructor. \
                `initial_finished` is a `bool` tensor filled by False and has \
                the same shape as `start_tokens`.
        """
        # TODO: remove the restriction of force_cpu
        init_finished = tensor.fill_constant_batch_size_like(
            input=self.start_tokens,
            shape=[-1],
            dtype="bool",
            value=False,
            force_cpu=True)
        init_inputs = self.embedding_fn(self.start_tokens)
        return init_inputs, init_finished

    def sample(self, time, outputs, states):
1980
        r"""
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        Perform sampling by using `argmax` according to the `outputs`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`. 
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        sample_ids = tensor.argmax(outputs, axis=-1)
        return sample_ids

    def next_inputs(self, time, outputs, states, sample_ids):
2001
        r"""
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        Generate inputs for the next decoding step by applying `embedding_fn`
        to `sample_ids`. Simultaneously, produce the states for next time step
        by directly using the input `states` and emit status telling whether
        each minibatch entry gets an `end_token` sample.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`.
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.
            sample_ids(Variable): An `int64` tensor variable shaped `[batch_size]`.
                It is same as `sample_ids` returned by `sample()`.

        Returns:
            tuple: A tuple( :code:`(finished, next_inputs, next_states)` ). \
                `next_inputs` and `next_states` both are a (possibly nested \
                structure of) tensor variable[s],  and the tensor's shape is \
                `[batch_size, ...]`. `next_states` is identical to the input \
                argument `states`. `finished` is a `bool` Tensor with \
                shape `[batch_size]`.
        """
        finished = control_flow.equal(sample_ids, self.end_token)
        next_inputs = self.embedding_fn(sample_ids)
        return finished, next_inputs, states


class SampleEmbeddingHelper(GreedyEmbeddingHelper):
    """
    SampleEmbeddingHelper is a subclass of GreedyEmbeddingHelper. It is a decoding
    helper uses sampling (from a distribution) instead of argmax of the output
    (treated as logits) and passes the results through an embedding layer to get
    inputs for the next decoding step.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.SampleEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self,
                 embedding_fn,
                 start_tokens,
                 end_token,
                 softmax_temperature=None,
                 seed=None):
2069
        r"""
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
        Constructor of SampleEmbeddingHelper.

        Parameters:
            embedding_fn(callable): A functor to apply on the argmax results. 
                Mostly it is an embedding layer to transform ids to embeddings.
                **Note that fluid.embedding should be used here rather than
                fluid.layers.embedding, since shape of ids is [batch_size].
                when using fluid.layers.embedding, must unsqueeze in embedding_fn.**
            start_tokens(Variable):  A `int64` tensor shaped `[batch_size]`,
                representing the start tokens.
            end_token(int): The end token id.
            softmax_temperature(float, optional): the value to divide the logits
                by before computing the softmax. Higher temperatures (above 1.0)
                lead to more random, while lower temperatures push the sampling
                distribution towards the argmax. It must be strictly greater than
                0. Defaults to None, meaning using a temperature valued 1.0.
            seed: (int, optional) The sampling seed. Defaults to None, meaning not
                to use fixed seed.

        Returns:
            tuple: A tuple( :code:`(initial_inputs, initial_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type.
        """
        super(SampleEmbeddingHelper, self).__init__(embedding_fn, start_tokens,
                                                    end_token)
        self.softmax_temperature = tensor.fill_constant(
            shape=[1], dtype="float32", value=softmax_temperature
        ) if softmax_temperature is not None else None
        self.seed = seed

    def sample(self, time, outputs, states):
2103
        r"""
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
        Perform sampling from a categorical distribution, and the distribution
        is computed by `softmax(outputs/softmax_temperature)`.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the
                caller, representing the current time step number of decoding.
            outputs(Variable): A tensor variable. Usually it's data type is float32
                or float64, and it's shape is `[batch_size, vocabulary_size]`,
                representing the predicted logits of current step. It is same as
                `outputs` returned by `BasicDecoder.output_fn(BasicDecoder.cell.call())`. 
            states(Variable): A (possibly nested structure of) tensor variable[s].
                It is same as `new_states` returned by `BasicDecoder.cell.call()`.

        Returns:
            Variable: An `int64` tensor with shape `[batch_size]`, representing \
                the sampled ids.
        """
        logits = (outputs / self.softmax_temperature
                  ) if self.softmax_temperature is not None else outputs
        probs = nn.softmax(logits)
        # TODO: remove this stop_gradient. The stop_gradient of sample_ids can
        # not pass to probs, since sampling_id op does not have corresponding
        # grad op and thus can not pass.
        probs.stop_gradient = True
        sample_ids = nn.sampling_id(
            probs, seed=self.seed, dtype=self.start_tokens.dtype)
        return sample_ids


class BasicDecoder(Decoder):
    """
    BasicDecoder is a subclass of Decoder and assembles a RNNCell and DecodeHelper
    instance as members, where the DecodeHelper helps to implement customed
    decoding strategies.. It performs one decoding step as following steps:

    1. Perform `cell_outputs, cell_states = cell.call(inputs, states)`
    to get outputs and new states from cell.

    2. Perform `sample_ids = helper.sample(time, cell_outputs, cell_states)`
    to sample ids as decoded results of the current time step.

    3. Perform `finished, next_inputs, next_states = helper.next_inputs(time,
    cell_outputs, cell_states, sample_ids)` to generate inputs, states and
    finished status for the next decoding step.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            trg_emb = fluid.data(name="trg_emb",
                                 shape=[None, None, 128],
                                 dtype="float32")
            
            trg_embeder = lambda x: fluid.embedding(
                x, size=[10000, 128], param_attr=fluid.ParamAttr(name="trg_embedding"))
            output_layer = lambda x: layers.fc(x,
                                            size=10000,
                                            num_flatten_dims=len(x.shape) - 1,
                                            param_attr=fluid.ParamAttr(name=
                                                                    "output_w"),
                                            bias_attr=False)
            helper = layers.SampleEmbeddingHelper(trg_embeder, start_tokens=0, end_token=1)
            decoder_cell = layers.GRUCell(hidden_size=128)
            decoder = layers.BasicDecoder(decoder_cell, helper, output_fn=output_layer)
            outputs = layers.dynamic_decode(
                decoder=decoder, inits=decoder_cell.get_initial_states(encoder_output))
    """

    def __init__(self, cell, helper, output_fn=None):
        """
        Constructor of BasicDecoder.

        Parameters:
            cell(RNNCell): An instance of `RNNCell` or object with the same interface.
            helper(DecodeHelper): An instance of `DecodeHelper`.
            output_fn(optional): A callable to apply to the cell's output prior to
                sampling. Default None.
        """
        self.cell = cell
        self.helper = helper
        self.output_fn = output_fn

    def initialize(self, initial_cell_states):
2188
        r"""
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        BasicDecoder initialization includes helper initialization and cell
        initialization, and cell initialization uses `initial_cell_states` as
        the result directly.

        Parameters:
            initial_cell_states(Variable): A (possibly nested structure of)
                tensor variable[s]. An argument provided by the caller `dynamic_decode`.

        Returns:
            tuple: A tuple( :code:(initial_inputs, initial_cell_states, finished)` ). \
                `initial_inputs` and `initial_states` both are a (possibly nested \
                structure of) tensor variable[s], and `finished` is a tensor with \
                bool data type. `initial_inputs` and `finished` are the results \
                of `helper.initialize()`, and `initial_cell_states` is same as \
                the input argument counterpart.
        """
        (initial_inputs, initial_finished) = self.helper.initialize()
        return initial_inputs, initial_cell_states, initial_finished

    class OutputWrapper(
            collections.namedtuple("OutputWrapper",
                                   ("cell_outputs", "sample_ids"))):
        """
        The structure for the returned value `outputs` of `decoder.step`.
        A namedtuple includes cell_outputs, sample_ids as fields.
        """
        pass

    def step(self, time, inputs, states, **kwargs):
2218
        r"""
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        Perform one decoding step as following steps:

        1. Perform `cell_outputs, cell_states = cell.call(inputs, states)`
        to get outputs and new states from cell.

        2. Perform `sample_ids = helper.sample(time, cell_outputs, cell_states)`
        to sample ids as decoded results of the current time step.

        3. Perform `finished, next_inputs, next_states = helper.next_inputs(time,
        cell_outputs, cell_states, sample_ids)` to generate inputs, states and
        finished status for the next decoding step.

        Parameters:
            time(Variable): An `int64` tensor with shape `[1]` provided by the caller,
                representing the current time step number of decoding.
            inputs(Variable): A tensor variable. It is same as `initial_inputs`
                returned by `initialize()` for the first decoding step and
                `next_inputs` returned by `step()` for the others.
            states(Variable): A structure of tensor variables.
                It is same as the `initial_cell_states` returned by `initialize()`
                for the first decoding step and `next_states` returned by
                `step()` for the others.
            **kwargs: Additional keyword arguments, provided by the caller
                `dynamic_decode`. 
        
        Returns:
            tuple: A tuple( :code:`(outputs, next_states, next_inputs, finished)` ). \
                `outputs` is a namedtuple(including cell_outputs, sample_ids, \
                as fields) of tensor variables, where `cell_outputs` is the result \
                fof `cell.call()` and `sample_ids` is the result of `helper.sample()`. \
                `next_states` and `next_inputs` have the same structure, shape \
                and data type as the input arguments `states` and `inputs` separately. \
                `finished` is a `bool` tensor with shape `[batch_size]`.
        """
        cell_outputs, cell_states = self.cell(inputs, states, **kwargs)
        if self.output_fn is not None:
            cell_outputs = self.output_fn(cell_outputs)
        sample_ids = self.helper.sample(
            time=time, outputs=cell_outputs, states=cell_states)
        sample_ids.stop_gradient = True
        (finished, next_inputs, next_states) = self.helper.next_inputs(
            time=time,
            outputs=cell_outputs,
            states=cell_states,
            sample_ids=sample_ids)
        outputs = self.OutputWrapper(cell_outputs, sample_ids)
        return (outputs, next_states, next_inputs, finished)
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280


def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
2281
    r"""
2282
	:api_attr: Static Graph
S
swtkiwi 已提交
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    **Note**:
        1. This OP only supports LoDTensor as inputs. If you need to deal with Tensor, please use :ref:`api_fluid_layers_lstm` .
        2. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    The implementation of this OP include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you do not need peephole connections, please set use_peepholes to False .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size (int): must be 4 * hidden_size.
        h_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. Default: None.
        c_0( :ref:`api_guide_Variable_en` , optional): The initial hidden state of the LSTM, multi-dimensional Tensor of shape :math:`[batch\_size, hidden\_size]` .
                       Data type is float32 or float64. If set to None, it will be a vector of all 0. `h_0` and `c_0` can be None but only at the same time. Default: None.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [hidden_size, 4*hidden_size].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].
                                 
        use_peepholes (bool, optional): Whether to use peephole connection or not. Default: True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default: False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default: "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default: "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default: "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default: "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

            The hidden state and cell state of LSTM

                - hidden: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            emb_dim = 256
            vocab_size = 10000
            hidden_dim = 512
            
            data = fluid.data(name='x', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                           bias_attr=False)

            forward, cell = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
            forward.shape  # (-1, 512)
            cell.shape  # (-1, 512)
    """
J
Jiabin Yang 已提交
2380
    assert _non_static_mode(
2381
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstm."

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'dynamic_lstm')

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(h_0, Variable):
        check_variable_and_dtype(h_0, 'h_0', ['float32', 'float64'],
                                 'dynamic_lstm')

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstm')
    if isinstance(c_0, Variable):
        check_variable_and_dtype(c_0, 'c_0', ['float32', 'float64'],
                                 'dynamic_lstm')

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


2441 2442 2443 2444
@deprecated(
    since='2.0.0',
    update_to='paddle.nn.LSTM',
    reason="This API may occur CUDNN errors.")
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
         dropout_prob=0.0,
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
2457
    r"""
2458
	:api_attr: Static Graph
S
swtkiwi 已提交
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
    **Note**:
        This OP only supports running on GPU devices.

    This OP implements LSTM operation - `Hochreiter, S., & Schmidhuber, J. (1997) <http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf>`_ .

    The implementation of this OP does not include diagonal/peephole connections.
    Please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need peephole connections, please use :ref:`api_fluid_layers_dynamic_lstm` .

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_{x_i} + b_{h_i})
    .. math::
      f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_{x_f} + b_{h_f})
    .. math::
      o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_{x_o} + b_{h_o})
    .. math::
      \widetilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + b{x_c} + b_{h_c})
    .. math::
      c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
      h_t = o_t \odot tanh(c_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`h_{t-1}, c_{t-1}` represent the hidden state and cell state at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
        init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
G
GaoWei8 已提交
2500
        max_len (int): This parameter has no effect and will be discarded.
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
        init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
                       If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
        hidden_size (int): hidden size of the LSTM.
        num_layers (int): total layers number of the LSTM.
        dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers.
                             Default: 0.0.
        is_bidirec (bool, optional): If it is bidirectional. Default: False.
        is_test (bool, optional): If it is in test phrase. Default: False.
        name (str, optional): A name for this layer. If set None, the layer
                         will be named automatically. Default: None.
        default_initializer(Initializer, optional): Where use initializer to initialize the Weight
T
tianshuo78520a 已提交
2513
                         If set None, default initializer will be used. Default: None.
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        seed(int, optional): Seed for dropout in LSTM, If it's -1, dropout will use random seed. Default: 1.


    Returns:
        tuple ( :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` , :ref:`api_guide_Variable_en` ) :

                        Three tensors, rnn_out, last_h, last_c:

                        - rnn_out is result of LSTM hidden, shape is :math:`[seq\_len, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[seq\_len, batch\_size, hidden\_size*2]`
                        - last_h is the hidden state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is :math:`[num\_layers, batch\_size, hidden\_size]` \
                          if is_bidirec set to True, shape will be :math:`[num\_layers*2, batch\_size, hidden\_size]`


    Examples:
        .. code-block:: python
            
2535
            import paddle
2536 2537
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
2538
            paddle.enable_static()
2539 2540 2541 2542 2543

            emb_dim = 256
            vocab_size = 10000
            data = fluid.data(name='x', shape=[None, 100], dtype='int64')
            emb = fluid.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
2544
            batch_size = 100
2545 2546 2547 2548
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
2549
            max_len = 12
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
            rnn_out.shape  # (-1, 100, 150)
            last_h.shape  # (1, 20, 150)
            last_c.shape  # (1, 20, 150)
    """

    helper = LayerHelper('cudnn_lstm', **locals())
X
Xing Wu 已提交
2561 2562 2563 2564 2565 2566
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_h, 'init_h', ['float32', 'float64'], 'lstm')
    check_variable_and_dtype(init_c, 'init_c', ['float32', 'float64'], 'lstm')
    check_type(max_len, 'max_len', (int), 'lstm')
    check_type(hidden_size, 'hidden_size', (int), 'lstm')
    check_type(num_layers, 'num_layers', (int), 'lstm')
2567 2568 2569 2570
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
G
GaoWei8 已提交
2571 2572
    num_dirrection = 2 if is_bidirec == True else 1

2573 2574
    for i in range(num_layers):
        if i == 0:
G
GaoWei8 已提交
2575
            input_weight_size = (input_size * hidden_size) * 4 * num_dirrection
2576
        else:
G
GaoWei8 已提交
2577 2578
            input_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
        hidden_weight_size = (hidden_size * hidden_size) * 4 * num_dirrection
2579

G
GaoWei8 已提交
2580 2581
        weight_size += input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8 * num_dirrection
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)
G
GaoWei8 已提交
2592 2593 2594 2595 2596
    reserve = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
    state_out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
    state_out.persistable = True
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
        },
        outputs={
            'Out': out,
G
GaoWei8 已提交
2608 2609 2610 2611
            'LastH': last_h,
            'LastC': last_c,
            'Reserve': reserve,
            'StateOut': state_out,
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
        },
        attrs={
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
                  dtype='float32',
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
2642
    r"""
2643
	:api_attr: Static Graph
S
swtkiwi 已提交
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    **Note**:
        1. In order to improve efficiency, users must first map the input of dimension [T, hidden_size] to input of [T, 4 * hidden_size], and then pass it to this OP.

    This OP implements the LSTMP (LSTM Projected) layer.
    The LSTMP layer has a separate linear mapping layer behind the LSTM layer. -- `Sak, H., Senior, A., & Beaufays, F. (2014) <https://ai.google/research/pubs/pub43905.pdf>`_ .

    Compared with the standard LSTM layer, LSTMP has an additional linear mapping layer,
    which is used to map from the original hidden state :math:`h_t` to the lower dimensional state :math:`r_t` .
    This reduces the total number of parameters and computational complexity, especially when the output unit is relatively large.

    The default implementation of the OP contains diagonal/peephole connections,
    please refer to `Gers, F. A., & Schmidhuber, J. (2000) <ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf>`_ .
    If you need to disable the peephole connections, set use_peepholes to False.

    This OP computes each timestep as follows:

    .. math::
      i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
    .. math::
          f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
    .. math::
          o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_{t-1} + b_o)
    .. math::
          \widetilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
    .. math::
          c_t = f_t \odot c_{t-1} + i_t \odot \widetilde{c_t}
    .. math::
          h_t = o_t \odot act_h(c_t)
    .. math::
          r_t = \overline{act_h}(W_{rh}h_t)

    The symbolic meanings in the formula are as follows:

    - :math:`x_{t}` represents the input at timestep :math:`t`
    - :math:`h_{t}` represents the hidden state at timestep :math:`t`
    - :math:`r_{t}` : represents the state of the projected output of the hidden state :math:`h_{t}`
    - :math:`h_{t-1}, c_{t-1}, r_{t-1}` represent the hidden state, cell state and projected output at timestep :math:`t-1` , respectively
    - :math:`\widetilde{c_t}` represents the candidate cell state
    - :math:`i_t` , :math:`f_t` and :math:`o_t` represent input gate, forget gate, output gate, respectively
    - :math:`W` represents weight (e.g., :math:`W_{ix}` is the weight of a linear transformation of input :math:`x_{t}` when calculating input gate :math:`i_t` )
    - :math:`b` represents bias (e.g., :math:`b_{i}` is the bias of input gate)
    - :math:`\sigma` represents nonlinear activation function for gate, default sigmoid
    - :math:`\odot` represents the Hadamard product of a matrix, i.e. multiplying the elements of the same position for two matrices with the same dimension to get another matrix with the same dimension

    Parameters:
        input( :ref:`api_guide_Variable_en` ): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence.
                         It is a multi-dimensional LODTensor of shape :math:`[T, 4*hidden\_size]` . Data type is float32 or float64.
        size(int): must be 4 * hidden_size.
        proj_size(int): The size of projection output.
        param_attr(ParamAttr, optional): Parameter attribute of weight. If it is None, the default weight parameter attribute is used. Please refer to ref:`api_fluid_ParamAttr' .
                              If the user needs to set this parameter, the dimension must be :math:`[hidden\_size, 4*hidden\_size]` . Default: None.

                              - Weights = :math:`\{ W_{cr},W_{ir},W_{fr},W_{or} \}` , the shape is [P, 4*hidden_size] , where P is the projection size.
                              - Projection weight  = :math:`\{ W_{rh} \}` , the shape is [hidden_size, P].

        bias_attr (ParamAttr, optional): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
                              Please refer to ref:`api_fluid_ParamAttr' . Default: None.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is [1, 4*hidden_size].
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is [1, 7*hidden_size].

        use_peepholes (bool, optional): Whether to use peephole connection or not. Default True.
        is_reverse (bool, optional): Whether to calculate reverse LSTM. Default False.
        gate_activation (str, optional): The activation for input gate, forget gate and output gate. Default "sigmoid".
        cell_activation (str, optional): The activation for cell output. Default "tanh".
        candidate_activation (str, optional): The activation for candidate hidden state. Default "tanh".
        proj_activation(str, optional): The activation for projection output. Default "tanh".
        dtype (str, optional): Data type, can be "float32" or "float64". Default "float32".
        name (str, optional): A name for this layer. Please refer to :ref:`api_guide_Name` . Default: None.
        h_0( :ref:`api_guide_Variable` , optional): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size. Default: None.
        c_0( :ref:`api_guide_Variable` , optional): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape :math:`[batch\_size, P]` , where P is the projection size.
                       `h_0` and `c_0` can be None but only at the same time. Default: None.
        cell_clip(float, optional): If not None, the cell state is clipped
                             by this value prior to the cell output activation. Default: None.
        proj_clip(float, optional): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`. Default: None.

    Returns:
        tuple ( :ref:`api_guide_Variable` , :ref:`api_guide_Variable` ) :

                The hidden state and cell state of LSTMP

                - hidden: LoDTensor with shape of :math:`[T, P]` , and its lod and dtype is the same as the input.
                - cell: LoDTensor with shape of :math:`[T, hidden\_size]` , and its lod and dtype is the same as the input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence', shape=[None], dtype='int64', lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim, proj_dim = 512, 256
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
                                    act=None, bias_attr=None)
            proj_out, last_c = fluid.layers.dynamic_lstmp(input=fc_out,
                                                    size=hidden_dim * 4,
                                                    proj_size=proj_dim,
                                                    use_peepholes=False,
                                                    is_reverse=True,
                                                    cell_activation="tanh",
                                                    proj_activation="tanh")
            proj_out.shape  # (-1, 256)
            last_c.shape  # (-1, 512)
    """

J
Jiabin Yang 已提交
2764
    assert _non_static_mode(
2765 2766 2767
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'dynamic_lstmp')

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(h_0, Variable):
        check_variable_and_dtype(h_0, 'h_0', ['float32', 'float64'],
                                 'dynamic_lstmp')

    check_type(c_0, 'c_0', (Variable, type(None)), 'dynamic_lstmp')
    if isinstance(c_0, Variable):
        check_variable_and_dtype(c_0, 'c_0', ['float32', 'float64'],
                                 'dynamic_lstmp')

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    helper = LayerHelper('lstmp', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    if cell_clip:
T
tianshuo78520a 已提交
2817
        assert cell_clip >= 0, "cell_clip should not be negative."
2818
    if proj_clip:
T
tianshuo78520a 已提交
2819
        assert proj_clip >= 0, "proj_clip should not be negative."
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852

    helper.append_op(
        type='lstmp',
        inputs=inputs,
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None,
                origin_mode=False):
2853
    r"""
2854
	:api_attr: Static Graph
S
swtkiwi 已提交
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
    **Note: The input type of this must be LoDTensor. If the input type to be
    processed is Tensor, use** :ref:`api_fluid_layers_StaticRNN` .

    This operator is used to perform the calculations for a single layer of
    Gated Recurrent Unit (GRU) on full sequences step by step. The calculations
    in one time step support these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not from ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of ``size`` should
    be used before this operator, and the output should be used as ``input`` here.
    :math:`h_{t-1}` is the hidden state from previous time step. 
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A LoDTensor whose lod level is 1, representing the input
            after linear projection. Its shape should be :math:`[T, D \\times 3]` ,
            where :math:`T` stands for the total sequence lengths in this mini-batch,
            :math:`D` for the hidden size. The data type should be float32 or float64.
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        is_reverse(bool, optional): Whether to compute in the reversed order of
            input sequences. Default False.
T
tianshuo78520a 已提交
2923
        gate_activation(str, optional): The activation function corresponding to
2924 2925
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".
T
tianshuo78520a 已提交
2926
        candidate_activation(str, optional): The activation function corresponding to
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
        h_0 (Variable, optional): A Tensor representing the initial hidden state.
            It not provided, the default initial hidden state is 0. The shape is
            :math:`[N, D]` , where :math:`N` is the number of sequences in the
            mini-batch, :math:`D` for the hidden size. The data type should be
            same as ``input`` . Default None.

    Returns:
        Variable: A LoDTensor whose lod level is 1 and shape is :math:`[T, D]` , \
            where :math:`T` stands for the total sequence lengths in this mini-batch \
            :math:`D` for the hidden size. It represents GRU transformed sequence output, \
            and has the same lod and data type with ``input`` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='sequence',
                      shape=[None],
                      dtype='int64',
                      lod_level=1)
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
    """

J
Jiabin Yang 已提交
2958
    assert _non_static_mode(
2959 2960
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

2961 2962 2963 2964 2965 2966 2967 2968
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'dynamic_gru')

    check_type(h_0, 'h_0', (Variable, type(None)), 'dynamic_gru')
    if isinstance(h_0, Variable):
        check_variable_and_dtype(h_0, 'h_0', ['float32', 'float64'],
                                 'dynamic_gru')

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    batch_size = input.shape[0]
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0:
        assert h_0.shape == (
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0

    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation,
            'origin_mode': origin_mode
        })
    return hidden


def gru_unit(input,
             hidden,
             size,
             param_attr=None,
             bias_attr=None,
             activation='tanh',
             gate_activation='sigmoid',
             origin_mode=False):
3015
    r"""
3016
	:api_attr: Static Graph
S
swtkiwi 已提交
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    Gated Recurrent Unit (GRU) RNN cell. This operator performs GRU calculations for
    one time step and it supports these two modes:

    If ``origin_mode`` is True, then the formula used is from paper
    `Learning Phrase Representations using RNN Encoder Decoder for Statistical
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_ .

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}


    if ``origin_mode`` is False, then the formula used is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling  <https://arxiv.org/pdf/1412.3555.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}

    :math:`x_t` is the input of current time step, but it is not ``input`` .
    This operator does not include the calculations :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` ,
    **Note** thus a fully-connect layer whose size is 3 times of GRU hidden size should
    be used before this operator, and the output should be used as ``input`` here.
    :math:`h_{t-1}` is the hidden state from previous time step. 
    :math:`u_t` , :math:`r_t` , :math:`\\tilde{h_t}` and :math:`h_t` stand for
    update gate, reset gate, candidate hidden and hidden output separately.
    :math:`W_{uh}, b_u` , :math:`W_{rh}, b_r` and :math:`W_{ch}, b_c` stand for
    the weight matrix and bias used in update gate, reset gate, candidate hidden
    calculations. For implementation, the three weight matrix are merged into a
    tensor shaped :math:`[D, D \\times 3]` , the three bias are concatenated as
    a tensor shaped :math:`[1, D \\times 3]` , where :math:`D` stands for the
    hidden size; The data layout of weight tensor is: :math:`W_{uh}` and :math:`W_{rh}`
    are concatenated with shape :math:`[D, D  \\times 2]` lying on the first part,
    and :math:`W_{ch}` lying on the latter part with shape :math:`[D, D]` .


    Args:
        input(Variable): A 2D Tensor representing the input after linear projection
            after linear projection. Its shape should be :math:`[N, D \\times 3]` ,
            where :math:`N` stands for batch size, :math:`D` for the hidden size.
            The data type should be float32 or float64.
        hidden(Variable): A 2D Tensor representing the hidden state from previous step.
            Its shape should be :math:`[N, D]` , where :math:`N` stands for batch size,
            :math:`D` for the hidden size. The data type should be same as ``input`` .
        size(int): Indicate the hidden size.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
T
tianshuo78520a 已提交
3082
        activation(str, optional): The activation function corresponding to
3083 3084
            :math:`act_c` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "tanh".
T
tianshuo78520a 已提交
3085
        gate_activation(str, optional): The activation function corresponding to
3086 3087 3088 3089 3090 3091
            :math:`act_g` in the formula. "sigmoid", "tanh", "relu" and "identity"
            are supported. Default "sigmoid".

    Returns:
        tuple: The tuple contains three Tensor variables with the same data type \
            as ``input`` . They represent the hidden state for next time step ( :math:`h_t` ), \
T
tianshuo78520a 已提交
3092
            reset previous hidden state ( :math:`r_t \odot h_{t-1}` ), and the \
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
            concatenation of :math:`h_t, r_t, \\tilde{h_t}` . And they have shape \
            :math:`[N, D]` , :math:`[N, D]` , :math:`[N, D \times 3]` separately. \
            Usually only the hidden state for next time step ( :math:`h_t` ) is used \
            as output and state, the other two are intermediate results of calculations.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            emb = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)

    """
X
Xing Wu 已提交
3115 3116 3117 3118
    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'gru_unit')
    check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                             'gru_unit')
    check_type(size, 'size', (int), 'gru_unit')
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size // 3

    # create weight
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
    # create bias
    if helper.bias_attr:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    helper.append_op(
        type='gru_unit',
        inputs=inputs,
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
            'origin_mode': origin_mode
        })

    return updated_hidden, reset_hidden_pre, gate


def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                is_accumulated=True,
                name=None,
                return_parent_idx=False):
3173
    r"""
S
swtkiwi 已提交
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.

    **This operator only supports LoDTensor.** It is used after finishing
    scores calculation to perform beam search for one time step. Specifically,
    after ``ids`` and ``scores`` have been produced, it selects the top-K
    ( `k` is ``beam_size`` ) candidate word ids of current step from ``ids``
T
tianshuo78520a 已提交
3185
    according to the corresponding ``scores``. Additionally, ``pre_id`` and
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
    ``pre_scores`` are the output of `beam_search` at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if ``is_accumulated`` is True, the ``scores`` passed in should
    be accumulated scores. Otherwise, the ``scores`` are
    considered as the probabilities of single step and would be transformed to
    the log field and added up with ``pre_scores`` for final scores in this
    operator. Length penalty should be done with extra operators before calculating
    the accumulated scores if needed.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py

    Args:
        pre_ids(Variable): A LodTensor variable (lod level is 2), representing
            the selected ids of previous step. It is the output of beam_search
            at previous step. Its shape is `[batch_size, 1]` and its lod is
            `[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step. The data type should be int64.
        pre_scores(Variable): A LodTensor variable has the same shape and lod
            with ``pre_ids`` , representing the accumulated scores corresponding
            to the selected ids of previous step. It is the output of
X
Xing Wu 已提交
3209
            beam_search at previous step. The data type should be float32 or float64.
3210 3211 3212 3213 3214
        ids(Variable|None): A LodTensor variable containing the candidates ids.
            It has the same lod with ``pre_ids`` and its shape should be
            `[batch_size * beam_size, K]`, where `K` supposed to be greater than
            ``beam_size`` and the first dimension size (decrease as samples reach
            to the end) should be same as that of ``pre_ids`` . The data type
T
tianshuo78520a 已提交
3215
            should be int64. It can be None, which use index in ``scores`` as
3216 3217 3218
            ids.
        scores(Variable): A LodTensor variable containing the accumulated
            scores corresponding to ``ids`` . Both its shape and lod are same as
X
Xing Wu 已提交
3219
            those of ``ids`` . The data type should be float32 or float64.
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int): **It can be ignored and mustn't change currently.**
            The 2 level lod used in this operator has the following
            meaning: The first level describes how many beams each sample has,
            which would change to 0 when beams of the sample all end (batch reduce);
            The second level describes how many times each beam is selected.
            Default 0, which shouldn't be changed currently.
        is_accumulated(bool): Whether the input ``score`` is accumulated scores.
            Default True.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
        return_parent_idx(bool, optional): Whether to return an extra Tensor variable
T
tianshuo78520a 已提交
3234
            in output, which stores the selected ids' parent index in
3235 3236 3237 3238 3239 3240 3241 3242
            ``pre_ids`` and can be used to update RNN's states by gather operator.
            Default False.

    Returns:
        tuple: The tuple contains two or three LodTensor variables. The two LodTensor, \
            representing the selected ids and the corresponding accumulated scores of \
            current step, have the same shape `[batch_size, beam_size]` and lod with 2 levels, \
            and have data types int64 and float32. If ``return_parent_idx`` is True, \
T
tianshuo78520a 已提交
3243
            an extra Tensor variable preserving the selected ids' parent index \
3244 3245 3246 3247 3248 3249 3250
            is included, whose shape is `[batch_size * beam_size]` and data type \
            is int64.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3251 3252
            import paddle
            paddle.enable_static()
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277

            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            beam_size = 4
            end_id = 1
            pre_ids = fluid.data(
                name='pre_id', shape=[None, 1], lod_level=2, dtype='int64')
            pre_scores = fluid.data(
                name='pre_scores', shape=[None, 1], lod_level=2, dtype='float32')
            probs = fluid.data(
                name='probs', shape=[None, 10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = fluid.layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
3278 3279 3280 3281 3282 3283
    check_variable_and_dtype(pre_ids, 'pre_ids', ['int64'], 'beam_search')
    check_variable_and_dtype(pre_scores, 'pre_scores', ['float32', 'float64'],
                             'beam_search')
    check_type(ids, 'ids', (Variable, type(None)), 'beam_search')
    check_variable_and_dtype(scores, 'scores', ['float32', 'float64'],
                             'beam_search')
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
    helper = LayerHelper('beam_search', **locals())
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids

    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")

    helper.append_op(
        type='beam_search',
        inputs=inputs,
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
            'parent_idx': parent_idx
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
            'is_accumulated': is_accumulated,
        })
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores


def beam_search_decode(ids, scores, beam_size, end_id, name=None):
3323
    r"""
S
swtkiwi 已提交
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
    This operator is used after beam search has completed. It constructs the
    full predicted sequences for each sample by walking back along the search
    paths stored in lod of ``ids`` . The result sequences are stored in a
    LoDTensor, which uses the following way to parse:

    .. code-block:: text

        If lod = [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]

        The first level of lod stands for: There are 2 samples each having 3
        (beam width) predicted sequence.

        The second level of lod stands for: The lengths of the first sample's
        3 predicted sequences are 12, 12, 16; The lengths of the second sample's
        3 predicted sequences are 14, 13, 15.


    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py

    Args:
        ids(Variable): The LoDTensorArray variable containing the selected ids
            of all steps. Each LoDTensor in it has int64 data type and 2 level
            lod which can be used to get the search paths.
        scores(Variable): The LodTensorArray variable containing the accumulated
            scores corresponding to selected ids of all steps. It has the same size
            as ``ids`` . Each LoDTensor in it has the same shape and lod as the
            counterpart in ``ids`` , and has a float32 data type.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.

    Returns:
        tuple: The tuple contains two LodTensor variables. The two LodTensor, \
T
tianshuo78520a 已提交
3361
            containing the full sequences of ids and the corresponding accumulated \
3362 3363 3364 3365 3366 3367 3368 3369
            scores, have the same shape flattened to 1D and have the same 2 level \
            lod. The lod can be used to get how many predicted sequences each sample \
            has and how many ids each predicted sequence has.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3370 3371
            import paddle
            paddle.enable_static()
3372 3373 3374 3375 3376 3377 3378
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
3379 3380 3381
    check_variable_and_dtype(ids, 'ids', ['int64'], 'beam_search_encode')
    check_variable_and_dtype(scores, 'scores', ['float32'],
                             'beam_search_encode')
3382 3383
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
3384 3385
    sentence_scores = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
              param_attr=None,
              bias_attr=None,
              name=None):
3408
    r"""
3409
	:api_attr: Static Graph
S
swtkiwi 已提交
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
    Long-Short Term Memory (LSTM) RNN cell. This operator performs LSTM calculations for
    one time step, whose implementation is based on calculations described in `RECURRENT
    NEURAL NETWORK REGULARIZATION <http://arxiv.org/abs/1409.2329>`_  .

    We add forget_bias to the biases of the forget gate in order to
    reduce the scale of forgetting. The formula is as follows:
    
    .. math::

        i_{t} & = \sigma(W_{x_{i}}x_{t} + W_{h_{i}}h_{t-1} + b_{i})

        f_{t} & = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f} + forget\\_bias)

        c_{t} & = f_{t}c_{t-1} + i_{t} tanh (W_{x_{c}}x_{t} + W_{h_{c}}h_{t-1} + b_{c})

        o_{t} & = \sigma(W_{x_{o}}x_{t} + W_{h_{o}}h_{t-1} + b_{o})

        h_{t} & = o_{t} tanh (c_{t})

    :math:`x_{t}` stands for ``x_t`` , corresponding to the input of current time step;
    :math:`h_{t-1}` and :math:`c_{t-1}` correspond to ``hidden_t_prev`` and ``cell_t_prev`` ,
    representing the output of from previous time step.
    :math:`i_{t}, f_{t}, c_{t}, o_{t}, h_{t}` are input gate, forget gate, cell, output gate
    and hidden calculation.

    Args:
        x_t(Variable): A 2D Tensor representing the input of current time step.
            Its shape should be :math:`[N, M]` , where :math:`N` stands for batch
            size, :math:`M` for the feature size of input. The data type should
            be float32 or float64.
        hidden_t_prev(Variable): A 2D Tensor representing the hidden value from
            previous step. Its shape should be :math:`[N, D]` , where :math:`N`
            stands for batch size, :math:`D` for the hidden size. The data type
            should be same as ``x_t`` .
        cell_t_prev(Variable): A 2D Tensor representing the cell value from
            previous step. It has the same shape and data type with ``hidden_t_prev`` .
        forget_bias (float, optional): :math:`forget\\_bias` added to the biases
            of the forget gate. Default 0.
        param_attr(ParamAttr, optional):  To specify the weight parameter property.
            Default: None, which means the default weight parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr, optional): To specify the bias parameter property.
            Default: None, which means the default bias parameter property is used.
            See usage for details in :ref:`api_fluid_ParamAttr` .
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.

    Returns:
        tuple: The tuple contains two Tensor variables with the same shape and \
            data type with ``hidden_t_prev`` , representing the hidden value and \
            cell value which correspond to :math:`h_{t}` and :math:`c_{t}` in \
            the formula.

    Raises:
        ValueError: Rank of x_t must be 2.
        ValueError: Rank of hidden_t_prev must be 2.
        ValueError: Rank of cell_t_prev must be 2.
        ValueError: The 1st dimensions of x_t, hidden_t_prev and cell_t_prev must be the same.
        ValueError: The 2nd dimensions of hidden_t_prev and cell_t_prev must be the same.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.data(name='step_data', shape=[None], dtype='int64')
            x = fluid.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.data(
                name='pre_hidden', shape=[None, hidden_dim], dtype='float32')
            pre_cell = fluid.data(
                name='pre_cell', shape=[None, hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())
X
Xing Wu 已提交
3491 3492 3493 3494 3495
    check_variable_and_dtype(x_t, 'x_t', ['float32', 'float64'], 'lstm_unit')
    check_variable_and_dtype(hidden_t_prev, 'hidden_t_prev',
                             ['float32', 'float64'], 'lstm_unit')
    check_variable_and_dtype(cell_t_prev, 'cell_t_prev',
                             ['float32', 'float64'], 'lstm_unit')
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
                         "cell_t_prev must be the same.")

    if bias_attr is None:
        bias_attr = ParamAttr()

    size = cell_t_prev.shape[1]
    concat_out = nn.concat(input=[x_t, hidden_t_prev], axis=1)
    fc_out = nn.fc(input=concat_out,
                   size=4 * size,
                   param_attr=param_attr,
                   bias_attr=bias_attr)
    dtype = x_t.dtype
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

    return h, c