conv_transpose_cudnn_op.cu 50.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18 19 20
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
21
#include "paddle/fluid/operators/conv_cudnn_helper.h"
22
#endif
23
#include "paddle/fluid/operators/conv_transpose_op.h"
24
#include "paddle/phi/kernels/funcs/math_function.h"
25
#include "paddle/phi/kernels/funcs/padding.h"
26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int D>
static void DataTranspose(const framework::ExecutionContext& ctx,
                          const Tensor* input, Tensor* output,
                          const std::vector<int>& axis, int flag = 0) {
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
37
  phi::funcs::Transpose<platform::CUDADeviceContext, T, D> transpose;
38 39 40 41 42 43 44 45
  auto in_dims = input->dims();
  std::vector<int64_t> input_transpose_vec;
  for (size_t i = 0; i < axis.size(); ++i) {
    if (flag == 0)
      input_transpose_vec.push_back(in_dims[axis[i]]);
    else
      input_transpose_vec.push_back(in_dims[i]);
  }
46
  framework::DDim input_transpose_dims(phi::make_ddim(input_transpose_vec));
47 48 49 50 51 52 53 54
  output->mutable_data<T>(input_transpose_dims, ctx.GetPlace());
  transpose(dev_ctx, *input, output, axis);
}

template <typename T>
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
58 59 60 61 62 63 64 65 66 67 68 69 70
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const T* filter_data = filter->data<T>();
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
71 72 73
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
74 75 76

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
77 78
    std::vector<int> input_vec = phi::vectorize<int>(input->dims());
    std::vector<int> output_vec = phi::vectorize<int>(output->dims());
W
wuhuanzhou 已提交
79
    if (data_layout == platform::DataLayout::kNHWC) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
      }
    } else {
      input_transpose = *input;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
103
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
104
    framework::DDim filter_data_dims =
105 106
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
107 108 109 110
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
111
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = input_transpose.dims()[0];
      new_input_shape_vec[1] = input_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            input_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
130
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
131 132 133 134 135 136 137 138 139 140 141
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
142 143 144
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              dev_ctx, input_pad, input_transpose, pad_value,
              &transformed_input);
145 146
        } break;
        case 5: {
147 148 149
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              dev_ctx, input_pad, input_transpose, pad_value,
              &transformed_input);
150 151
        } break;
        default:
152 153
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      }
    } else {
      transformed_input = input_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    const T* input_data = transformed_input.data<T>();
178
    input_vec = phi::vectorize<int>(transformed_input.dims());
179 180 181 182 183 184 185 186 187 188 189

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    Tensor transformed_output;
    if (!is_sys_pad) {
190
      DDim transformed_output_shape(phi::make_ddim(transformed_output_vec));
191 192 193 194 195
      transformed_output.mutable_data<T>(transformed_output_shape,
                                         ctx.GetPlace());
    } else {
      output->mutable_data<T>(ctx.GetPlace());
      transformed_output.ShareDataWith(*output);
196
      transformed_output.Resize(phi::make_ddim(transformed_output_vec));
197 198 199
    }
    T* transformed_output_data = transformed_output.data<T>();

W
wuhuanzhou 已提交
200
    platform::DataLayout layout;
201

202 203
    int iwo_groups = groups;
    int c_groups = 1;
204
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
205 206 207 208 209
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

210
    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
211
      layout = platform::DataLayout::kNCHW;
212
    } else {
W
wuhuanzhou 已提交
213
      layout = platform::DataLayout::kNCDHW;
214 215
    }

216
    size_t workspace_size = 0;
217 218 219
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t algo{};
#else
220
    cudnnConvolutionBwdDataAlgo_t algo{};
221
#endif
222 223 224
    // ------------------- cudnn conv algorithm ---------------------
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
225 226
    auto layout_tensor = GetCudnnTensorFormat(layout);
    bool deterministic = FLAGS_cudnn_deterministic;
L
Lv Mengsi 已提交
227

228 229
    auto dtype = platform::CudnnDataType<T>::type;
    // ------------------- cudnn descriptors ---------------------
230 231 232 233 234 235 236
    ConvArgs args{&transformed_output,
                  filter,
                  &transformed_input,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
237 238 239 240
    args.handle = handle;
    args.idesc.set(transformed_output, iwo_groups);
    args.wdesc.set(*filter, layout_tensor, iwo_groups);
    args.odesc.set(transformed_input, iwo_groups);
A
AshburnLee 已提交
241 242
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), c_groups);
243

244 245
#ifdef PADDLE_WITH_HIP
    using search = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
246 247
    workspace_size = std::max(workspace_size, search::GetWorkspaceSize(args));
    algo = search::Find<T>(args, false, deterministic, workspace_size, ctx);
248
#else
249
    using search = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
250
    algo = search::Find<T>(args, false, deterministic, ctx);
251 252
    workspace_size =
        std::max(workspace_size, search::GetWorkspaceSize(args, algo));
253
#endif
254 255 256 257 258 259 260

    // ------------------- cudnn conv transpose forward ---------------------
    int input_offset =
        transformed_input.numel() / transformed_input.dims()[0] / groups;
    int output_offset =
        transformed_output.numel() / transformed_output.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
261 262
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
263 264
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    for (int g = 0; g < groups; g++) {
265 266
#ifdef PADDLE_WITH_HIP
      auto cudnn_func = [&](void* cudnn_workspace) {
267
        PADDLE_ENFORCE_GPU_SUCCESS(
268 269 270 271 272 273 274 275
            platform::dynload::miopenConvolutionBackwardData(
                handle, &alpha, args.odesc.desc(),
                input_data + input_offset * g, args.wdesc.desc(),
                filter_data + filter_offset * g, args.cdesc.desc(), algo, &beta,
                args.idesc.desc(), transformed_output_data + output_offset * g,
                cudnn_workspace, workspace_size));
      };
#else   // PADDLE_WITH_HIP
276
      auto cudnn_func = [&](void* cudnn_workspace) {
277
        PADDLE_ENFORCE_GPU_SUCCESS(
278
            platform::dynload::cudnnConvolutionBackwardData(
279 280 281 282
                handle, &alpha, args.wdesc.desc(),
                filter_data + filter_offset * g, args.odesc.desc(),
                input_data + input_offset * g, args.cdesc.desc(), algo,
                cudnn_workspace, workspace_size, &beta, args.idesc.desc(),
283
                transformed_output_data + output_offset * g));
284
      };
285
#endif  // PADDLE_WITH_HIP
286
      workspace_handle.RunFunc(cudnn_func, workspace_size);
287 288 289 290 291 292 293 294 295
    }
    if (!is_sys_pad && strides.size() == 2U) {
      Slice<paddle::platform::CUDADeviceContext, T, 4>(
          ctx, &transformed_output, output, starts, ends, axes);
    } else if (!is_sys_pad && strides.size() == 3U) {
      Slice<paddle::platform::CUDADeviceContext, T, 5>(
          ctx, &transformed_output, output, starts, ends, axes);
    }

W
wuhuanzhou 已提交
296
    if (data_layout == platform::DataLayout::kNHWC) {
297 298 299
      Tensor output_transpose;
      Tensor output_nchw;
      output_nchw.ShareDataWith(*output);
300
      output_nchw.Resize(phi::make_ddim(output_vec));
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 2, 3, 1};
        DataTranspose<T, 4>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 2, 3, 4, 1};
        DataTranspose<T, 5>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      }
    }
  }
};

template <typename T>
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
318 319 320
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
336 337 338
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
339 340 341 342

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    Tensor output_grad_transpose;
343 344
    std::vector<int> input_vec = phi::vectorize<int>(input->dims());
    std::vector<int> output_vec = phi::vectorize<int>(output_grad->dims());
W
wuhuanzhou 已提交
345
    if (data_layout == platform::DataLayout::kNHWC) {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 4>(ctx, output_grad, &output_grad_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 5>(ctx, output_grad, &output_grad_transpose, axis);
      }
    } else {
      input_transpose = *input;
      output_grad_transpose = *output_grad;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
372
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
373
    framework::DDim filter_data_dims =
374 375
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
376 377 378 379
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
380
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_output_grad;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);
      new_output_grad_shape_vec[0] = output_grad_transpose.dims()[0];
      new_output_grad_shape_vec[1] = output_grad_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_output_grad_shape_vec[i + 2] =
            output_grad_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_output_grad_shape(
400
          phi::make_ddim(new_output_grad_shape_vec));
401 402 403 404 405 406 407 408 409 410 411
      transformed_output_grad.Resize(new_output_grad_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_output_grad =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
412 413
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              dev_ctx, input_pad, output_grad_transpose, pad_value,
414 415 416
              &transformed_output_grad);
        } break;
        case 5: {
417 418
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              dev_ctx, input_pad, output_grad_transpose, pad_value,
419 420 421
              &transformed_output_grad);
        } break;
        default:
422 423
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
      }
    } else {
      transformed_output_grad = output_grad_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = input_transpose.data<T>();
    const T* output_grad_data = transformed_output_grad.data<T>();
440
    output_vec = phi::vectorize<int>(transformed_output_grad.dims());
441 442

    // ------------------- cudnn descriptors ---------------------
W
wuhuanzhou 已提交
443
    platform::DataLayout layout;
444 445

    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
446
      layout = platform::DataLayout::kNCHW;
447
    } else {
W
wuhuanzhou 已提交
448
      layout = platform::DataLayout::kNCDHW;
449 450
    }

451 452
    int iwo_groups = groups;
    int c_groups = 1;
453
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
454 455 456 457
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

    auto dtype = platform::CudnnDataType<T>::type;

    ConvArgs args1{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
475 476 477 478 479

#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t data_algo{};
    miopenConvBwdWeightsAlgorithm_t filter_algo{};
#else
480 481
    cudnnConvolutionFwdAlgo_t data_algo{};
    cudnnConvolutionBwdFilterAlgo_t filter_algo{};
482
#endif
483 484 485

    auto layout_tensor = GetCudnnTensorFormat(layout);
    size_t workspace_size = 0;
486 487
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
488 489 490 491
    bool deterministic = FLAGS_cudnn_deterministic;
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

492
    if (input_grad) {
493 494 495 496 497
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(transformed_output_grad, iwo_groups);
      args1.wdesc.set(*filter, layout_tensor, iwo_groups);
      args1.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
498 499
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
500 501
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
502 503 504 505
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo =
          search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
506
#else
507
      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
508
      data_algo = search1::Find<T>(args1, false, deterministic, ctx);
509 510
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
511
#endif
512 513 514
    }

    if (filter_grad) {
515 516 517 518 519
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      args2.handle = handle;
      args2.idesc.set(transformed_output_grad, iwo_groups);
      args2.wdesc.set(*filter_grad, layout_tensor, iwo_groups);
      args2.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
520 521
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
522 523
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
524 525 526 527
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo =
          search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
528
#else
529
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
530
      filter_algo = search2::Find<T>(args2, false, deterministic, ctx);
531 532
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
533
#endif
534 535 536 537 538 539 540 541
    }

    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset = transformed_output_grad.numel() /
                             transformed_output_grad.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
542 543
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
544 545 546 547
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    if (input_grad) {
      // Because beta is zero, it is unnecessary to reset input_grad.
      for (int g = 0; g < groups; g++) {
548 549
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
550
          PADDLE_ENFORCE_GPU_SUCCESS(
551 552 553 554 555 556 557 558 559
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, &beta, args1.odesc.desc(),
                  input_grad_data + input_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
560
        auto cudnn_func = [&](void* cudnn_workspace) {
561 562 563 564 565 566
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnConvolutionForward(
              handle, &alpha, args1.idesc.desc(),
              output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
              filter_data + filter_offset * g, args1.cdesc.desc(), data_algo,
              cudnn_workspace, workspace_size, &beta, args1.odesc.desc(),
              input_grad_data + input_offset * g));
567
        };
568
#endif  // PADDLE_WITH_HIP
569
        workspace_handle.RunFunc(cudnn_func, workspace_size);
570 571
      }

W
wuhuanzhou 已提交
572
      if (data_layout == platform::DataLayout::kNHWC) {
573 574 575
        Tensor input_grad_transpose;
        Tensor input_grad_nchw;
        input_grad_nchw.ShareDataWith(*input_grad);
576
        input_grad_nchw.Resize(phi::make_ddim(input_vec));
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        if (strides.size() == 2U) {
          std::vector<int> axis = {0, 2, 3, 1};
          DataTranspose<T, 4>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        } else if (strides.size() == 3U) {
          std::vector<int> axis = {0, 2, 3, 4, 1};
          DataTranspose<T, 5>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        }
      }
    }

    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      // Gradient with respect to the filter
      for (int g = 0; g < groups; g++) {
596 597
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
598
          PADDLE_ENFORCE_GPU_SUCCESS(
599 600 601 602 603 604 605 606 607
              platform::dynload::miopenConvolutionBackwardWeights(
                  handle, &alpha, args2.odesc.desc(),
                  input_data + input_offset * g, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.cdesc.desc(),
                  filter_algo, &beta, args2.wdesc.desc(),
                  filter_grad_data + filter_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
608
        auto cudnn_func = [&](void* cudnn_workspace) {
609
          PADDLE_ENFORCE_GPU_SUCCESS(
610
              platform::dynload::cudnnConvolutionBackwardFilter(
611 612 613 614 615
                  handle, &alpha, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.odesc.desc(),
                  input_data + input_offset * g, args2.cdesc.desc(),
                  filter_algo, cudnn_workspace, workspace_size, &beta,
                  args2.wdesc.desc(), filter_grad_data + filter_offset * g));
616
        };
617
#endif  // PADDLE_WITH_HIP
618
        workspace_handle.RunFunc(cudnn_func, workspace_size);
619 620 621 622 623
      }
    }
  }
};

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv_bp_data(W, ddI) + conv_bp_data(ddW, I)
 * dW = conv_bp_filter(dO, ddI)
 * dI = conv(dO, ddW)
 */
template <typename T>
class CUDNNConvTransposeDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
651
      phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
      set_zero(dev_ctx, ddO, static_cast<T>(0));
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    bool deterministic = FLAGS_cudnn_deterministic;

    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
    Tensor transformed_ddX_channel(X->type());

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
      if (dX) {
        transformed_dX_channel = *dX;
      }
    }
    std::vector<int> output_vec =
728
        phi::vectorize<int>(transformed_dO_channel.dims());
729 730 731

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
732
    framework::DDim in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
733
    framework::DDim filter_data_dims =
734 735
        phi::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
736 737 738 739
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
740
    bool is_sys_pad = phi::funcs::IsSymmetricPadding(paddings, data_dim);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dO(dO->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);

      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      new_output_grad_shape_vec[0] = transformed_dO_channel.dims()[0];
      new_output_grad_shape_vec[1] = transformed_dO_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];

        new_output_grad_shape_vec[i + 2] =
            transformed_dO_channel.dims()[i + 2] + padding_diff[i];

        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
773
      framework::DDim new_input_shape(phi::make_ddim(new_input_shape_vec));
774 775 776 777
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);

      framework::DDim new_output_grad_shape(
778
          phi::make_ddim(new_output_grad_shape_vec));
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
      transformed_dO.Resize(new_output_grad_shape);

      transformed_dO =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
799 800 801
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              dev_ctx, input_pad, transformed_X_channel, pad_value,
              &transformed_X);
802
          if (dO) {
803 804
            phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                dev_ctx, input_pad, transformed_dO_channel, pad_value,
805 806 807 808
                &transformed_dO);
          }

          if (ddX) {
809 810
            phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                dev_ctx, input_pad, transformed_ddX_channel, pad_value,
811 812 813 814
                &transformed_ddX);
          }
        } break;
        case 5: {
815 816 817
          phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              dev_ctx, input_pad, transformed_X_channel, pad_value,
              &transformed_X);
818
          if (ddX) {
819 820
            phi::funcs::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                dev_ctx, input_pad, transformed_ddX_channel, pad_value,
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
                &transformed_ddX);
          }
        } break;
        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
      }

    } else {
      transformed_X = transformed_X_channel;
      transformed_dO = transformed_dO_channel;
      if (ddX) {
        transformed_ddX = transformed_ddX_channel;
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    if (!is_sys_pad) {
865
      DDim transformed_output_shape(phi::make_ddim(transformed_output_vec));
866 867 868 869 870
      transformed_ddO_channel.mutable_data<T>(transformed_output_shape,
                                              ctx.GetPlace());
    } else {
      ddO->mutable_data<T>(ctx.GetPlace());
      transformed_ddO_channel = *ddO;
871
      transformed_ddO_channel.Resize(phi::make_ddim(transformed_output_vec));
872 873 874 875 876 877
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
F
furnace 已提交
878
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    iwo_group = 1;
    c_group = groups;
    groups = 1;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{&transformed_ddO_channel,
                   W,
                   &transformed_ddX,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_ddO_channel, ddW,       &transformed_X, strides,
                   padding_common,           dilations, dtype};

    ConvArgs args3{&transformed_dO,
                   dW,
                   &transformed_ddX_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dO, ddW,  &transformed_dX_channel, strides, padding_common,
        dilations,       dtype};
907 908 909 910 911 912 913 914 915 916
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t bwd_algo1 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t bwd_algo2 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t data_algo =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
917 918 919 920 921 922 923 924
    cudnnConvolutionBwdDataAlgo_t bwd_algo1 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t bwd_algo2 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t data_algo =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
925
#endif
926

W
wuhuanzhou 已提交
927
    auto layout = GetCudnnTensorFormat(platform::DataLayout::kNCHW);
928 929 930 931 932 933 934 935 936 937 938 939 940 941

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;

    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddO_channel, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddX, iwo_group);
F
furnace 已提交
942 943
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
944 945
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
946 947 948
        workspace_size = search1::GetWorkspaceSize(args1);
        bwd_algo1 =
            search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
949
#else
950 951 952
        using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo1 = search1::Find<T>(args1, false, deterministic, ctx);
        workspace_size = search1::GetWorkspaceSize(args1, bwd_algo1);
953
#endif
954 955 956 957 958 959 960 961
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_ddO_channel, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_X, iwo_group);
F
furnace 已提交
962 963
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
964 965
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
966 967 968 969
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        bwd_algo2 =
            search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
970
#else
971 972 973 974
        using search2 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo2 = search2::Find<T>(args2, false, deterministic, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, bwd_algo2));
975
#endif
976 977 978 979 980 981 982 983 984 985 986
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_dO, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_ddX_channel, iwo_group);

F
furnace 已提交
987 988
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
989 990
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
991 992 993 994
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo =
          search3::Find<T>(args3, false, deterministic, workspace_size, ctx);
995
#else
996 997 998 999
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo = search3::Find<T>(args3, false, deterministic, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
1000
#endif
1001 1002 1003 1004 1005 1006 1007 1008 1009
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX_channel.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dO, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dX_channel, iwo_group);
F
furnace 已提交
1010 1011
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
1012 1013
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1014 1015 1016 1017
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo =
          search4::Find<T>(args4, false, deterministic, workspace_size, ctx);
1018
#else
1019 1020 1021 1022
      using search4 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
      data_algo = search4::Find<T>(args4, false, deterministic, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1023
#endif
1024 1025 1026
    }

    int i_n, i_c, i_d, i_h, i_w;
W
wuhuanzhou 已提交
1027 1028
    GetNCDHW(transformed_X.dims(), platform::DataLayout::kNCHW, &i_n, &i_c,
             &i_d, &i_h, &i_w);
1029 1030

    int o_n, o_c, o_d, o_h, o_w;
W
wuhuanzhou 已提交
1031 1032
    GetNCDHW(transformed_dO.dims(), platform::DataLayout::kNCHW, &o_n, &o_c,
             &o_d, &o_h, &o_w);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    int group_offset_in =
        transformed_X.numel() / transformed_X.dims()[0] / groups;
    int group_offset_out =
        transformed_dO.numel() / transformed_dO.dims()[0] / groups;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
1049 1050 1051
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1052
                PADDLE_ENFORCE_GPU_SUCCESS(
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        bwd_algo1, &beta, args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1063 1064
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1065
                PADDLE_ENFORCE_GPU_SUCCESS(
1066 1067 1068 1069 1070 1071 1072 1073 1074
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.cdesc.desc(),
                        bwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1075
#endif  // PADDLE_WITH_HIP
1076 1077 1078 1079
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
1080
#ifdef PADDLE_WITH_HIP
F
furnace 已提交
1081 1082 1083 1084
          // MIOPEN ONLY support beta to be 0.0f
          Tensor conv_x_ddw(dO->type());
          conv_x_ddw.Resize(transformed_ddO_channel.dims());
          T* conv_x_ddw_data = conv_x_ddw.mutable_data<T>(ctx.GetPlace());
1085 1086
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1087
                PADDLE_ENFORCE_GPU_SUCCESS(
1088 1089 1090 1091
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args2.odesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
F
furnace 已提交
1092 1093 1094
                        bwd_algo2, &beta, args2.idesc.desc(),
                        conv_x_ddw_data + i * group_offset_out, workspace_ptr,
                        workspace_size));
1095 1096
              },
              workspace_size);
1097
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
F
furnace 已提交
1098 1099 1100 1101 1102
              handle, miopenTensorOpAdd, &alpha, args2.idesc.desc(),
              transformed_ddy_channel + i * group_offset_out, &alpha,
              args2.idesc.desc(), conv_x_ddw_data + i * group_offset_out, &beta,
              args2.idesc.desc(),
              transformed_ddy_channel + i * group_offset_out));
1103
#else   // PADDLE_WITH_HIP
1104 1105
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1106
                PADDLE_ENFORCE_GPU_SUCCESS(
1107 1108 1109 1110 1111 1112 1113 1114 1115
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.odesc.desc(),
                        x + i * group_offset_in, args2.cdesc.desc(), bwd_algo2,
                        workspace_ptr, workspace_size, &alpha,
                        args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1116
#endif  // PADDLE_WITH_HIP
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        }
      }
      if ((!is_sys_pad) && (!channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        }
      } else if ((!is_sys_pad) && (channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        }

        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }

    T* transformed_dy_channel = transformed_dO.data<T>();
    if (dW && ddX) {
      ddx = transformed_ddX_channel.data<T>();
      for (int i = 0; i < groups; i++) {
1147 1148 1149
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1150
              PADDLE_ENFORCE_GPU_SUCCESS(
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args3.odesc.desc(),
                      ddx + i * group_offset_in, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, &beta,
                      args3.wdesc.desc(), dw + i * group_offset_filter,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1161 1162
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1163
              PADDLE_ENFORCE_GPU_SUCCESS(
1164 1165 1166 1167 1168 1169 1170 1171 1172
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.odesc.desc(), ddx + i * group_offset_in,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
            },
            workspace_size);
1173
#endif  // PADDLE_WITH_HIP
1174 1175 1176 1177 1178 1179
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
1180 1181 1182
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1183
              PADDLE_ENFORCE_GPU_SUCCESS(
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in, workspace_ptr,
                      workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1194 1195
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1196
              PADDLE_ENFORCE_GPU_SUCCESS(
1197 1198 1199 1200 1201 1202 1203 1204 1205
                  platform::dynload::cudnnConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in));
            },
            workspace_size);
1206
#endif  // PADDLE_WITH_HIP
1207 1208 1209 1210 1211 1212 1213 1214 1215
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

1216 1217 1218 1219
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1220
namespace plat = paddle::platform;
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
#else
1242
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1243
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1244 1245 1246
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1247
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1248 1249
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1250 1251 1252 1253 1254
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);
1255 1256

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1257
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1258 1259 1260
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1261
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1262 1263
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1264
#endif