conv_transpose_cudnn_op.cu 50.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18 19 20
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
21
#include "paddle/fluid/operators/conv_cudnn_helper.h"
22
#endif
23 24
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/operators/math/padding.h"
25
#include "paddle/pten/kernels/funcs/math_function.h"
26 27 28 29 30 31 32 33 34 35 36

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int D>
static void DataTranspose(const framework::ExecutionContext& ctx,
                          const Tensor* input, Tensor* output,
                          const std::vector<int>& axis, int flag = 0) {
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
37
  pten::funcs::Transpose<platform::CUDADeviceContext, T, D> transpose;
38 39 40 41 42 43 44 45
  auto in_dims = input->dims();
  std::vector<int64_t> input_transpose_vec;
  for (size_t i = 0; i < axis.size(); ++i) {
    if (flag == 0)
      input_transpose_vec.push_back(in_dims[axis[i]]);
    else
      input_transpose_vec.push_back(in_dims[i]);
  }
46
  framework::DDim input_transpose_dims(pten::make_ddim(input_transpose_vec));
47 48 49 50 51 52 53 54
  output->mutable_data<T>(input_transpose_dims, ctx.GetPlace());
  transpose(dev_ctx, *input, output, axis);
}

template <typename T>
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
58 59 60 61 62 63 64 65 66 67 68 69 70
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const T* filter_data = filter->data<T>();
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
71 72 73
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
74 75 76

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
77 78
    std::vector<int> input_vec = pten::vectorize<int>(input->dims());
    std::vector<int> output_vec = pten::vectorize<int>(output->dims());
W
wuhuanzhou 已提交
79
    if (data_layout == platform::DataLayout::kNHWC) {
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
      }
    } else {
      input_transpose = *input;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
103
    in_data_dims = pten::slice_ddim(in_dims, 2, in_dims.size());
104
    framework::DDim filter_data_dims =
105 106
        pten::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = pten::vectorize<int>(filter_data_dims);
107 108 109 110
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
111
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = input_transpose.dims()[0];
      new_input_shape_vec[1] = input_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            input_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
130
      framework::DDim new_input_shape(pten::make_ddim(new_input_shape_vec));
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        default:
150 151
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      }
    } else {
      transformed_input = input_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    const T* input_data = transformed_input.data<T>();
176
    input_vec = pten::vectorize<int>(transformed_input.dims());
177 178 179 180 181 182 183 184 185 186 187

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    Tensor transformed_output;
    if (!is_sys_pad) {
188
      DDim transformed_output_shape(pten::make_ddim(transformed_output_vec));
189 190 191 192 193
      transformed_output.mutable_data<T>(transformed_output_shape,
                                         ctx.GetPlace());
    } else {
      output->mutable_data<T>(ctx.GetPlace());
      transformed_output.ShareDataWith(*output);
194
      transformed_output.Resize(pten::make_ddim(transformed_output_vec));
195 196 197
    }
    T* transformed_output_data = transformed_output.data<T>();

W
wuhuanzhou 已提交
198
    platform::DataLayout layout;
199

200 201
    int iwo_groups = groups;
    int c_groups = 1;
202
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
203 204 205 206 207
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

208
    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
209
      layout = platform::DataLayout::kNCHW;
210
    } else {
W
wuhuanzhou 已提交
211
      layout = platform::DataLayout::kNCDHW;
212 213
    }

214
    size_t workspace_size = 0;
215 216 217
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t algo{};
#else
218
    cudnnConvolutionBwdDataAlgo_t algo{};
219
#endif
220 221 222
    // ------------------- cudnn conv algorithm ---------------------
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
223 224
    auto layout_tensor = GetCudnnTensorFormat(layout);
    bool deterministic = FLAGS_cudnn_deterministic;
L
Lv Mengsi 已提交
225

226 227
    auto dtype = platform::CudnnDataType<T>::type;
    // ------------------- cudnn descriptors ---------------------
228 229 230 231 232 233 234
    ConvArgs args{&transformed_output,
                  filter,
                  &transformed_input,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
235 236 237 238
    args.handle = handle;
    args.idesc.set(transformed_output, iwo_groups);
    args.wdesc.set(*filter, layout_tensor, iwo_groups);
    args.odesc.set(transformed_input, iwo_groups);
A
AshburnLee 已提交
239 240
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), c_groups);
241

242 243
#ifdef PADDLE_WITH_HIP
    using search = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
244 245
    workspace_size = std::max(workspace_size, search::GetWorkspaceSize(args));
    algo = search::Find<T>(args, false, deterministic, workspace_size, ctx);
246
#else
247
    using search = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
248
    algo = search::Find<T>(args, false, deterministic, ctx);
249 250
    workspace_size =
        std::max(workspace_size, search::GetWorkspaceSize(args, algo));
251
#endif
252 253 254 255 256 257 258

    // ------------------- cudnn conv transpose forward ---------------------
    int input_offset =
        transformed_input.numel() / transformed_input.dims()[0] / groups;
    int output_offset =
        transformed_output.numel() / transformed_output.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
259 260
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
261 262
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    for (int g = 0; g < groups; g++) {
263 264
#ifdef PADDLE_WITH_HIP
      auto cudnn_func = [&](void* cudnn_workspace) {
265
        PADDLE_ENFORCE_GPU_SUCCESS(
266 267 268 269 270 271 272 273
            platform::dynload::miopenConvolutionBackwardData(
                handle, &alpha, args.odesc.desc(),
                input_data + input_offset * g, args.wdesc.desc(),
                filter_data + filter_offset * g, args.cdesc.desc(), algo, &beta,
                args.idesc.desc(), transformed_output_data + output_offset * g,
                cudnn_workspace, workspace_size));
      };
#else   // PADDLE_WITH_HIP
274
      auto cudnn_func = [&](void* cudnn_workspace) {
275
        PADDLE_ENFORCE_GPU_SUCCESS(
276
            platform::dynload::cudnnConvolutionBackwardData(
277 278 279 280
                handle, &alpha, args.wdesc.desc(),
                filter_data + filter_offset * g, args.odesc.desc(),
                input_data + input_offset * g, args.cdesc.desc(), algo,
                cudnn_workspace, workspace_size, &beta, args.idesc.desc(),
281
                transformed_output_data + output_offset * g));
282
      };
283
#endif  // PADDLE_WITH_HIP
284
      workspace_handle.RunFunc(cudnn_func, workspace_size);
285 286 287 288 289 290 291 292 293
    }
    if (!is_sys_pad && strides.size() == 2U) {
      Slice<paddle::platform::CUDADeviceContext, T, 4>(
          ctx, &transformed_output, output, starts, ends, axes);
    } else if (!is_sys_pad && strides.size() == 3U) {
      Slice<paddle::platform::CUDADeviceContext, T, 5>(
          ctx, &transformed_output, output, starts, ends, axes);
    }

W
wuhuanzhou 已提交
294
    if (data_layout == platform::DataLayout::kNHWC) {
295 296 297
      Tensor output_transpose;
      Tensor output_nchw;
      output_nchw.ShareDataWith(*output);
298
      output_nchw.Resize(pten::make_ddim(output_vec));
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 2, 3, 1};
        DataTranspose<T, 4>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 2, 3, 4, 1};
        DataTranspose<T, 5>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      }
    }
  }
};

template <typename T>
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
316 317 318
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
334 335 336
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
337 338 339 340

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    Tensor output_grad_transpose;
341 342
    std::vector<int> input_vec = pten::vectorize<int>(input->dims());
    std::vector<int> output_vec = pten::vectorize<int>(output_grad->dims());
W
wuhuanzhou 已提交
343
    if (data_layout == platform::DataLayout::kNHWC) {
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 4>(ctx, output_grad, &output_grad_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 5>(ctx, output_grad, &output_grad_transpose, axis);
      }
    } else {
      input_transpose = *input;
      output_grad_transpose = *output_grad;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
370
    in_data_dims = pten::slice_ddim(in_dims, 2, in_dims.size());
371
    framework::DDim filter_data_dims =
372 373
        pten::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = pten::vectorize<int>(filter_data_dims);
374 375 376 377
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
378
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_output_grad;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);
      new_output_grad_shape_vec[0] = output_grad_transpose.dims()[0];
      new_output_grad_shape_vec[1] = output_grad_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_output_grad_shape_vec[i + 2] =
            output_grad_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_output_grad_shape(
398
          pten::make_ddim(new_output_grad_shape_vec));
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      transformed_output_grad.Resize(new_output_grad_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_output_grad =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        default:
420 421
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
      }
    } else {
      transformed_output_grad = output_grad_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = input_transpose.data<T>();
    const T* output_grad_data = transformed_output_grad.data<T>();
438
    output_vec = pten::vectorize<int>(transformed_output_grad.dims());
439 440

    // ------------------- cudnn descriptors ---------------------
W
wuhuanzhou 已提交
441
    platform::DataLayout layout;
442 443

    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
444
      layout = platform::DataLayout::kNCHW;
445
    } else {
W
wuhuanzhou 已提交
446
      layout = platform::DataLayout::kNCDHW;
447 448
    }

449 450
    int iwo_groups = groups;
    int c_groups = 1;
451
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
452 453 454 455
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

    auto dtype = platform::CudnnDataType<T>::type;

    ConvArgs args1{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
473 474 475 476 477

#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t data_algo{};
    miopenConvBwdWeightsAlgorithm_t filter_algo{};
#else
478 479
    cudnnConvolutionFwdAlgo_t data_algo{};
    cudnnConvolutionBwdFilterAlgo_t filter_algo{};
480
#endif
481 482 483

    auto layout_tensor = GetCudnnTensorFormat(layout);
    size_t workspace_size = 0;
484 485
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
486 487 488 489
    bool deterministic = FLAGS_cudnn_deterministic;
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

490
    if (input_grad) {
491 492 493 494 495
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(transformed_output_grad, iwo_groups);
      args1.wdesc.set(*filter, layout_tensor, iwo_groups);
      args1.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
496 497
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
498 499
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
500 501 502 503
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1));
      data_algo =
          search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
504
#else
505
      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
506
      data_algo = search1::Find<T>(args1, false, deterministic, ctx);
507 508
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
509
#endif
510 511 512
    }

    if (filter_grad) {
513 514 515 516 517
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      args2.handle = handle;
      args2.idesc.set(transformed_output_grad, iwo_groups);
      args2.wdesc.set(*filter_grad, layout_tensor, iwo_groups);
      args2.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
518 519
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
520 521
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
522 523 524 525
      workspace_size =
          std::max(workspace_size, search2::GetWorkspaceSize(args2));
      filter_algo =
          search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
526
#else
527
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
528
      filter_algo = search2::Find<T>(args2, false, deterministic, ctx);
529 530
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
531
#endif
532 533 534 535 536 537 538 539
    }

    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset = transformed_output_grad.numel() /
                             transformed_output_grad.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
540 541
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
542 543 544 545
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    if (input_grad) {
      // Because beta is zero, it is unnecessary to reset input_grad.
      for (int g = 0; g < groups; g++) {
546 547
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
548
          PADDLE_ENFORCE_GPU_SUCCESS(
549 550 551 552 553 554 555 556 557
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, &beta, args1.odesc.desc(),
                  input_grad_data + input_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
558
        auto cudnn_func = [&](void* cudnn_workspace) {
559 560 561 562 563 564
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnConvolutionForward(
              handle, &alpha, args1.idesc.desc(),
              output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
              filter_data + filter_offset * g, args1.cdesc.desc(), data_algo,
              cudnn_workspace, workspace_size, &beta, args1.odesc.desc(),
              input_grad_data + input_offset * g));
565
        };
566
#endif  // PADDLE_WITH_HIP
567
        workspace_handle.RunFunc(cudnn_func, workspace_size);
568 569
      }

W
wuhuanzhou 已提交
570
      if (data_layout == platform::DataLayout::kNHWC) {
571 572 573
        Tensor input_grad_transpose;
        Tensor input_grad_nchw;
        input_grad_nchw.ShareDataWith(*input_grad);
574
        input_grad_nchw.Resize(pten::make_ddim(input_vec));
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        if (strides.size() == 2U) {
          std::vector<int> axis = {0, 2, 3, 1};
          DataTranspose<T, 4>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        } else if (strides.size() == 3U) {
          std::vector<int> axis = {0, 2, 3, 4, 1};
          DataTranspose<T, 5>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        }
      }
    }

    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      // Gradient with respect to the filter
      for (int g = 0; g < groups; g++) {
594 595
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
596
          PADDLE_ENFORCE_GPU_SUCCESS(
597 598 599 600 601 602 603 604 605
              platform::dynload::miopenConvolutionBackwardWeights(
                  handle, &alpha, args2.odesc.desc(),
                  input_data + input_offset * g, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.cdesc.desc(),
                  filter_algo, &beta, args2.wdesc.desc(),
                  filter_grad_data + filter_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
606
        auto cudnn_func = [&](void* cudnn_workspace) {
607
          PADDLE_ENFORCE_GPU_SUCCESS(
608
              platform::dynload::cudnnConvolutionBackwardFilter(
609 610 611 612 613
                  handle, &alpha, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.odesc.desc(),
                  input_data + input_offset * g, args2.cdesc.desc(),
                  filter_algo, cudnn_workspace, workspace_size, &beta,
                  args2.wdesc.desc(), filter_grad_data + filter_offset * g));
614
        };
615
#endif  // PADDLE_WITH_HIP
616
        workspace_handle.RunFunc(cudnn_func, workspace_size);
617 618 619 620 621
      }
    }
  }
};

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv_bp_data(W, ddI) + conv_bp_data(ddW, I)
 * dW = conv_bp_filter(dO, ddI)
 * dI = conv(dO, ddW)
 */
template <typename T>
class CUDNNConvTransposeDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
649
      pten::funcs::SetConstant<platform::CUDADeviceContext, T> set_zero;
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
      set_zero(dev_ctx, ddO, static_cast<T>(0));
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    bool deterministic = FLAGS_cudnn_deterministic;

    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
    Tensor transformed_ddX_channel(X->type());

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
      if (dX) {
        transformed_dX_channel = *dX;
      }
    }
    std::vector<int> output_vec =
726
        pten::vectorize<int>(transformed_dO_channel.dims());
727 728 729

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
730
    framework::DDim in_data_dims = pten::slice_ddim(in_dims, 2, in_dims.size());
731
    framework::DDim filter_data_dims =
732 733
        pten::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = pten::vectorize<int>(filter_data_dims);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dO(dO->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);

      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      new_output_grad_shape_vec[0] = transformed_dO_channel.dims()[0];
      new_output_grad_shape_vec[1] = transformed_dO_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];

        new_output_grad_shape_vec[i + 2] =
            transformed_dO_channel.dims()[i + 2] + padding_diff[i];

        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
771
      framework::DDim new_input_shape(pten::make_ddim(new_input_shape_vec));
772 773 774 775
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);

      framework::DDim new_output_grad_shape(
776
          pten::make_ddim(new_output_grad_shape_vec));
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
      transformed_dO.Resize(new_output_grad_shape);

      transformed_dO =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (dO) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_dO_channel, pad_value,
                &transformed_dO);
          }

          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
      }

    } else {
      transformed_X = transformed_X_channel;
      transformed_dO = transformed_dO_channel;
      if (ddX) {
        transformed_ddX = transformed_ddX_channel;
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    if (!is_sys_pad) {
861
      DDim transformed_output_shape(pten::make_ddim(transformed_output_vec));
862 863 864 865 866
      transformed_ddO_channel.mutable_data<T>(transformed_output_shape,
                                              ctx.GetPlace());
    } else {
      ddO->mutable_data<T>(ctx.GetPlace());
      transformed_ddO_channel = *ddO;
867
      transformed_ddO_channel.Resize(pten::make_ddim(transformed_output_vec));
868 869 870 871 872 873
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
F
furnace 已提交
874
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    iwo_group = 1;
    c_group = groups;
    groups = 1;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{&transformed_ddO_channel,
                   W,
                   &transformed_ddX,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_ddO_channel, ddW,       &transformed_X, strides,
                   padding_common,           dilations, dtype};

    ConvArgs args3{&transformed_dO,
                   dW,
                   &transformed_ddX_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dO, ddW,  &transformed_dX_channel, strides, padding_common,
        dilations,       dtype};
903 904 905 906 907 908 909 910 911 912
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t bwd_algo1 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t bwd_algo2 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t data_algo =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
913 914 915 916 917 918 919 920
    cudnnConvolutionBwdDataAlgo_t bwd_algo1 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t bwd_algo2 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t data_algo =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
921
#endif
922

W
wuhuanzhou 已提交
923
    auto layout = GetCudnnTensorFormat(platform::DataLayout::kNCHW);
924 925 926 927 928 929 930 931 932 933 934 935 936 937

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;

    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddO_channel, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddX, iwo_group);
F
furnace 已提交
938 939
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
940 941
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
942 943 944
        workspace_size = search1::GetWorkspaceSize(args1);
        bwd_algo1 =
            search1::Find<T>(args1, false, deterministic, workspace_size, ctx);
945
#else
946 947 948
        using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo1 = search1::Find<T>(args1, false, deterministic, ctx);
        workspace_size = search1::GetWorkspaceSize(args1, bwd_algo1);
949
#endif
950 951 952 953 954 955 956 957
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_ddO_channel, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_X, iwo_group);
F
furnace 已提交
958 959
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
960 961
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
962 963 964 965
        workspace_size =
            std::max(workspace_size, search2::GetWorkspaceSize(args2));
        bwd_algo2 =
            search2::Find<T>(args2, false, deterministic, workspace_size, ctx);
966
#else
967 968 969 970
        using search2 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
        bwd_algo2 = search2::Find<T>(args2, false, deterministic, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, bwd_algo2));
971
#endif
972 973 974 975 976 977 978 979 980 981 982
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_dO, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_ddX_channel, iwo_group);

F
furnace 已提交
983 984
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
985 986
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
987 988 989 990
      workspace_size =
          std::max(workspace_size, search3::GetWorkspaceSize(args3));
      filter_algo =
          search3::Find<T>(args3, false, deterministic, workspace_size, ctx);
991
#else
992 993 994 995
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
      filter_algo = search3::Find<T>(args3, false, deterministic, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
996
#endif
997 998 999 1000 1001 1002 1003 1004 1005
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX_channel.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dO, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dX_channel, iwo_group);
F
furnace 已提交
1006 1007
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
1008 1009
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
1010 1011 1012 1013
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4));
      data_algo =
          search4::Find<T>(args4, false, deterministic, workspace_size, ctx);
1014
#else
1015 1016 1017 1018
      using search4 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
      data_algo = search4::Find<T>(args4, false, deterministic, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
1019
#endif
1020 1021 1022
    }

    int i_n, i_c, i_d, i_h, i_w;
W
wuhuanzhou 已提交
1023 1024
    GetNCDHW(transformed_X.dims(), platform::DataLayout::kNCHW, &i_n, &i_c,
             &i_d, &i_h, &i_w);
1025 1026

    int o_n, o_c, o_d, o_h, o_w;
W
wuhuanzhou 已提交
1027 1028
    GetNCDHW(transformed_dO.dims(), platform::DataLayout::kNCHW, &o_n, &o_c,
             &o_d, &o_h, &o_w);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044

    int group_offset_in =
        transformed_X.numel() / transformed_X.dims()[0] / groups;
    int group_offset_out =
        transformed_dO.numel() / transformed_dO.dims()[0] / groups;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
1045 1046 1047
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1048
                PADDLE_ENFORCE_GPU_SUCCESS(
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        bwd_algo1, &beta, args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1059 1060
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1061
                PADDLE_ENFORCE_GPU_SUCCESS(
1062 1063 1064 1065 1066 1067 1068 1069 1070
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.cdesc.desc(),
                        bwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1071
#endif  // PADDLE_WITH_HIP
1072 1073 1074 1075
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
1076
#ifdef PADDLE_WITH_HIP
F
furnace 已提交
1077 1078 1079 1080
          // MIOPEN ONLY support beta to be 0.0f
          Tensor conv_x_ddw(dO->type());
          conv_x_ddw.Resize(transformed_ddO_channel.dims());
          T* conv_x_ddw_data = conv_x_ddw.mutable_data<T>(ctx.GetPlace());
1081 1082
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1083
                PADDLE_ENFORCE_GPU_SUCCESS(
1084 1085 1086 1087
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args2.odesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
F
furnace 已提交
1088 1089 1090
                        bwd_algo2, &beta, args2.idesc.desc(),
                        conv_x_ddw_data + i * group_offset_out, workspace_ptr,
                        workspace_size));
1091 1092
              },
              workspace_size);
1093
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
F
furnace 已提交
1094 1095 1096 1097 1098
              handle, miopenTensorOpAdd, &alpha, args2.idesc.desc(),
              transformed_ddy_channel + i * group_offset_out, &alpha,
              args2.idesc.desc(), conv_x_ddw_data + i * group_offset_out, &beta,
              args2.idesc.desc(),
              transformed_ddy_channel + i * group_offset_out));
1099
#else   // PADDLE_WITH_HIP
1100 1101
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1102
                PADDLE_ENFORCE_GPU_SUCCESS(
1103 1104 1105 1106 1107 1108 1109 1110 1111
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.odesc.desc(),
                        x + i * group_offset_in, args2.cdesc.desc(), bwd_algo2,
                        workspace_ptr, workspace_size, &alpha,
                        args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1112
#endif  // PADDLE_WITH_HIP
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        }
      }
      if ((!is_sys_pad) && (!channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        }
      } else if ((!is_sys_pad) && (channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        }

        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }

    T* transformed_dy_channel = transformed_dO.data<T>();
    if (dW && ddX) {
      ddx = transformed_ddX_channel.data<T>();
      for (int i = 0; i < groups; i++) {
1143 1144 1145
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1146
              PADDLE_ENFORCE_GPU_SUCCESS(
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args3.odesc.desc(),
                      ddx + i * group_offset_in, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, &beta,
                      args3.wdesc.desc(), dw + i * group_offset_filter,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1157 1158
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1159
              PADDLE_ENFORCE_GPU_SUCCESS(
1160 1161 1162 1163 1164 1165 1166 1167 1168
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.odesc.desc(), ddx + i * group_offset_in,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
            },
            workspace_size);
1169
#endif  // PADDLE_WITH_HIP
1170 1171 1172 1173 1174 1175
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
1176 1177 1178
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1179
              PADDLE_ENFORCE_GPU_SUCCESS(
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in, workspace_ptr,
                      workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1190 1191
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1192
              PADDLE_ENFORCE_GPU_SUCCESS(
1193 1194 1195 1196 1197 1198 1199 1200 1201
                  platform::dynload::cudnnConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in));
            },
            workspace_size);
1202
#endif  // PADDLE_WITH_HIP
1203 1204 1205 1206 1207 1208 1209 1210 1211
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

1212 1213 1214 1215
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1216
namespace plat = paddle::platform;
1217

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
#else
1238
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1239
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1240 1241 1242
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1243
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1244 1245
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1246 1247 1248 1249 1250
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);
1251 1252

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1253
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1254 1255 1256
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1257
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1258 1259
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1260
#endif