program_config.py 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Any, Callable, Dict, List, Optional
16
import numpy as np
W
Wilber 已提交
17
import enum
18 19 20 21 22 23 24
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle import compat as cpt
from paddle.fluid.initializer import NumpyArrayInitializer
from paddle.fluid.framework import convert_np_dtype_to_dtype_

25 26 27 28 29
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.framework import IrGraph, IrNode, Operator
from paddle.fluid.executor import global_scope

30 31 32 33 34 35 36

class TensorConfig:
    '''
    A config builder for a input or a weight.
    '''

    def __init__(self,
37 38 39
                 lod: Optional[List[List[int]]] = None,
                 data_gen: Optional[Callable[..., np.array]] = None,
                 shape: Optional[List[List[int]]] = None):
40 41 42
        '''
        shape: The shape of the tensor.
        dtype: The data type of the tensor.
43
        data: The value of WeightVar. for input, it should be None
44
        '''
W
Wilber 已提交
45
        self.lod = lod
J
Jason 已提交
46 47 48 49 50 51 52 53 54 55
        if data_gen is not None:
            self.data_gen = data_gen
            self.data = data_gen()
            self.dtype = data_gen().dtype
            self.shape = data_gen().shape
        else:
            assert shape is not None, "While data_gen is not defined, shape must not be None"
            self.data = np.random.normal(0.0, 1.0, shape).astype(np.float32)
            self.shape = shape
            self.dtype = self.data.dtype
56 57 58

    def __repr__(self):
        return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype})
59 60


W
Wilber 已提交
61 62 63 64 65 66
class VarType(enum.Enum):
    LOD_TENSOR = 1
    LOD_TENSOR_ARRAY = 2
    STEP_SCOPES = 3


67 68 69 70 71 72 73
class OpConfig:
    '''  A config builder for generating a Op.  '''

    def __init__(self,
                 type: str,
                 inputs: Dict[str, List[str]],
                 outputs: Dict[str, List[str]],
74 75 76
                 attrs: Dict[str, Any] = None,
                 outputs_var_type: Dict[str, VarType] = None,
                 outputs_dtype: Dict[str, np.dtype] = None,
J
Jason 已提交
77
                 **kwargs):
78 79 80
        self.type = type
        self.inputs = inputs
        self.outputs = outputs
W
Wilber 已提交
81 82
        self.outputs_dtype = outputs_dtype
        self.outputs_var_type = outputs_var_type
83
        self.attrs = attrs
J
Jason 已提交
84 85 86
        if self.attrs is None:
            self.attrs = dict()
        self.attrs.update(kwargs)
87

88 89 90 91 92
    def __repr__(self):
        log_str = self.type
        log_str += str(self.attrs)
        return log_str

93

W
Wilber 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
_OP_WITHOUT_KERNEL_SET = {
    'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
    'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
    'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
    'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
    'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
    'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
    'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
    'copy_cross_scope'
}


class BlockConfig:
    ''' A config builder for generating a Block. '''

    def __init__(self,
                 ops: List[OpConfig],
                 vars: List[str],
112 113 114
                 vars_dtype: Dict[str, np.dtype] = None,
                 vars_var_type: Dict[str, VarType] = None,
                 vars_lod_level: Dict[str, int] = None):
W
Wilber 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        self.ops = ops
        self.vars = vars
        self.vars_dtype = vars_dtype
        self.vars_var_type = vars_var_type
        self.vars_lod_level = vars_lod_level

    def fill_block_desc(self, block_desc):
        for name in self.vars:
            var_desc = block_desc.var(cpt.to_bytes(name))
            var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
            if self.vars_lod_level is not None and name in self.vars_lod_level.keys(
            ):
                var_desc.set_lod_level(self.vars_lod_level[name])
            if self.vars_var_type is not None and name in self.vars_var_type.keys(
            ):
                if self.vars_var_type[name] == VarType.LOD_TENSOR_ARRAY:
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                elif self.vars_var_type[name] == VarType.STEP_SCOPES:
                    var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                    continue
            var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
            if self.vars_dtype is not None and name in self.vars_dtype.keys():
                var_desc.set_dtype(
                    convert_np_dtype_to_dtype_(self.vars_dtype[name]))

        for op_config in self.ops:
            op_desc = block_desc.append_op()
            op_desc.set_type(op_config.type)
            for name, values in op_config.inputs.items():
                op_desc.set_input(name, values)
            for name, values in op_config.attrs.items():
                op_desc._set_attr(name, values)
            for name, values in op_config.outputs.items():
                op_desc.set_output(name, values)
                for v in values:
                    if block_desc.has_var_recursive(cpt.to_bytes(v)):
                        continue
                    var_desc = block_desc.var(cpt.to_bytes(v))
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
                    if op_config.outputs_var_type is not None and v in op_config.outputs_var_type.keys(
                    ):
                        if op_config.outputs_var_type[
                                v] == VarType.LOD_TENSOR_ARRAY:
                            var_desc.set_type(
                                core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                        elif op_config.outputs_var_type[
                                v] == VarType.STEP_SCOPES:
                            var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                            continue
                    var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
                    if op_config.outputs_dtype is not None and v in op_config.outputs_dtype.keys(
                    ):
                        var_desc.set_dtype(
168 169
                            convert_np_dtype_to_dtype_(
                                op_config.outputs_dtype[v]))
W
Wilber 已提交
170 171 172 173 174 175
            if op_config.type not in _OP_WITHOUT_KERNEL_SET:
                op_desc.infer_var_type(block_desc)
                op_desc.infer_shape(block_desc)
            op_desc.check_attrs()


176 177 178
class ProgramConfig:
    '''  A config builder for generating a Program.  '''

179 180
    def __init__(self, ops: List[OpConfig], weights: Dict[str, TensorConfig],
                 inputs: Dict[str, TensorConfig], outputs: List[str]):
181
        self.ops = ops
W
Wilber 已提交
182 183 184 185 186 187 188 189 190 191 192
        # if no weight need to save, we create a place_holder to help seriazlie params.
        if not weights:

            def generate_weight():
                return np.array([1]).astype(np.float32)

            self.weights = {
                "place_holder_weight": TensorConfig(data_gen=generate_weight)
            }
        else:
            self.weights = weights
193 194 195
        self.inputs = inputs
        self.outputs = outputs

196 197 198 199 200 201 202 203 204 205
    def __repr__(self):
        log_str = ''
        for i in range(len(self.ops)):
            if i != len(self.ops) - 1:
                log_str += repr(self.ops[i]) + ' + '
            else:
                log_str += repr(self.ops[i])
        log_str += ' -- '
        for t, v in self.inputs.items():
            log_str += '[' + t + ': ' + str(v) + ']'
206 207
        for t, v in self.weights.items():
            log_str += '[' + t + ': ' + str(v) + ']'
208 209 210

        return log_str

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

def create_fake_model(program_config):
    '''  Create a Paddle model(in memory) according to the given config.  '''
    paddle.enable_static()
    main_program_desc = core.ProgramDesc()
    util_program = fluid.Program()
    main_block_desc = main_program_desc.block(0)

    var_desc = main_block_desc.var(cpt.to_bytes("feed"))
    var_desc.set_type(core.VarDesc.VarType.FEED_MINIBATCH)
    var_desc.set_persistable(True)

    index = 0
    for name, tensor_config in program_config.inputs.items():
        var_desc = main_block_desc.var(cpt.to_bytes(name))
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
229
        print(f"name: {name}; shape: {tensor_config.shape}")
230
        var_desc.set_need_check_feed(True)
W
Wilber 已提交
231 232
        if tensor_config.lod is not None:
            var_desc.set_lod_level(len(tensor_config.lod))
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        op_desc = main_block_desc._prepend_op()
        op_desc.set_type("feed")
        op_desc.set_input('X', ["feed"])
        op_desc.set_output('Out', [name])
        op_desc._set_attr("col", index)
        index = index + 1

    save_var_map = {}
    for name, tensor_config in program_config.weights.items():
        var_desc = main_block_desc.var(cpt.to_bytes(name))
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_persistable(True)

        save_var_map[name] = util_program.global_block().create_parameter(
            dtype=tensor_config.dtype,
            shape=tensor_config.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            name=name,
            initializer=NumpyArrayInitializer(tensor_config.data))
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var = util_program.global_block().create_var(
        type=core.VarDesc.VarType.RAW, name="out_var_0")
    out_var.desc.set_persistable(True)
261 262 263 264 265 266 267
    util_program.global_block().append_op(type='save_combine',
                                          inputs={'X': in_vars},
                                          outputs={'Y': out_var},
                                          attrs={
                                              'file_path': '',
                                              'save_to_memory': True
                                          })
268 269 270 271 272 273
    for op_config in program_config.ops:
        op_desc = main_block_desc.append_op()
        op_desc.set_type(op_config.type)
        for name, values in op_config.inputs.items():
            op_desc.set_input(name, values)
        for name, values in op_config.attrs.items():
W
Wilber 已提交
274 275 276 277 278 279
            if name == 'sub_block':
                sub_block_desc = main_program_desc.append_block(main_block_desc)
                values.fill_block_desc(sub_block_desc)
                op_desc._set_attr(name, sub_block_desc)
            else:
                op_desc._set_attr(name, values)
280 281
        for name, values in op_config.outputs.items():
            op_desc.set_output(name, values)
282
            for v in values:
W
Wilber 已提交
283 284
                if main_block_desc.has_var_recursive(cpt.to_bytes(v)):
                    continue
285 286
                var_desc = main_block_desc.var(cpt.to_bytes(v))
                var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
W
Wilber 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                if op_config.outputs_var_type is not None and v in op_config.outputs_var_type.keys(
                ):
                    if op_config.outputs_var_type[
                            v] == VarType.LOD_TENSOR_ARRAY:
                        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                    elif op_config.outputs_var_type[v] == VarType.STEP_SCOPES:
                        var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                        continue
                var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
                if op_config.outputs_dtype is not None and v in op_config.outputs_dtype.keys(
                ):
                    var_desc.set_dtype(
                        convert_np_dtype_to_dtype_(op_config.outputs_dtype[v]))
        if op_config.type not in _OP_WITHOUT_KERNEL_SET:
            op_desc.infer_var_type(main_block_desc)
            op_desc.infer_shape(main_block_desc)
        op_desc.check_attrs()
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    for index, name in enumerate(program_config.outputs):
        var_desc = main_block_desc.var(cpt.to_bytes("fetch"))
        var_desc.set_type(core.VarDesc.VarType.FETCH_LIST)
        var_desc.set_need_check_feed(True)
        op_desc = main_block_desc.append_op()
        op_desc.set_type("fetch")
        op_desc.set_input('X', [name])
        op_desc.set_output('Out', ["fetch"])
        op_desc._set_attr("col", index)

    main_program_desc._set_version()
    paddle.fluid.core.save_op_version_info(main_program_desc)

    model = main_program_desc.serialize_to_string()

    util_program._sync_with_cpp()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        executor.run(util_program)
        params = scope.find_var("out_var_0").get_bytes()
327

328
    return model, params
329 330 331 332 333 334 335 336 337 338 339


def create_quant_model(model,
                       params,
                       activation_quantize_type='moving_average_abs_max',
                       weight_quantize_type='channel_wise_abs_max',
                       save=False):
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
    [inference_program, feed_target_names,
340 341 342 343
     fetch_targets] = paddle.static.load_inference_model(path_prefix=None,
                                                         executor=exe,
                                                         model_filename=model,
                                                         params_filename=params)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
    }

    def _get_op_output_var_names(op):
        """ """
        assert isinstance(op, (IrNode, Operator)), \
            "The input op should be IrNode or Operator."
        var_names = []
        op_name = op.name() if isinstance(op, IrNode) \
            else op.type
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

W
Wilber 已提交
452 453 454 455 456 457 458
    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
        weight_quantize_type=weight_quantize_type)
    transform_pass.apply(graph)

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
        scope=scope, place=place, weight_quantize_type=weight_quantize_type)
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
491 492 493 494 495
        fluid.io.save_inference_model('test_inference_model',
                                      feed_target_names,
                                      fetch_targets,
                                      exe,
                                      main_program=main_program)
496 497 498 499

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
500 501 502
    serialized_program = paddle.static.serialize_program(feed_vars,
                                                         fetch_targets,
                                                         program=main_program)
503 504 505
    serialized_params = paddle.static.serialize_persistables(
        feed_vars, fetch_targets, executor=exe, program=main_program)
    return serialized_program, serialized_params