Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
255fc7d8
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
255fc7d8
编写于
8月 19, 2021
作者:
王
王明冬
提交者:
GitHub
8月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the auto scan test for TensorRT convert,test=develop (#34980)
上级
26213a77
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
437 addition
and
0 deletion
+437
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
...ddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
+92
-0
python/paddle/fluid/tests/unittests/ir/inference/program_config.py
...ddle/fluid/tests/unittests/ir/inference/program_config.py
+162
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
...d/tests/unittests/ir/inference/test_trt_convert_conv2d.py
+67
-0
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
.../tests/unittests/ir/inference/trt_layer_auto_scan_test.py
+115
-0
未找到文件。
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
255fc7d8
...
...
@@ -38,4 +38,5 @@ set_tests_properties(test_trt_dynamic_shape PROPERTIES TIMEOUT 120)
set_tests_properties
(
test_trt_pool_op PROPERTIES ENVIRONMENT FLAGS_fraction_of_gpu_memory_to_use=0.1 TIMEOUT 45
)
set_tests_properties
(
test_trt_reduce_mean_op PROPERTIES TIMEOUT 60
)
set_tests_properties
(
test_trt_tile_op PROPERTIES TIMEOUT 60
)
set_tests_properties
(
test_trt_convert_conv2d PROPERTIES TIMEOUT 100
)
endif
()
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
0 → 100644
浏览文件 @
255fc7d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
abc
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
NumpyArrayInitializer
import
paddle.fluid.core
as
core
from
paddle
import
compat
as
cpt
import
paddle.inference
as
paddle_infer
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
from
program_config
import
TensorConfig
,
OpConfig
,
ProgramConfig
,
create_fake_model
class
AutoScanTest
(
unittest
.
TestCase
):
def
__init__
(
self
,
methodName
=
'runTest'
):
paddle
.
enable_static
()
super
(
AutoScanTest
,
self
).
__init__
(
methodName
)
self
.
threshold
=
1e-5
@
abc
.
abstractmethod
def
sample_program_configs
(
self
)
->
List
[
ProgramConfig
]:
'''
Generate all config with the combination of different Input tensor shape and
different Attr values.
'''
raise
NotImplementedError
@
abc
.
abstractmethod
def
sample_predictor_configs
(
self
)
->
List
[
paddle_infer
.
Config
]:
raise
NotImplementedError
def
run_test_config
(
self
,
model
,
params
,
prog_config
,
pred_config
,
feed_data
)
->
Dict
[
str
,
np
.
ndarray
]:
'''
Test a single case.
'''
pred_config
.
set_model_buffer
(
model
,
len
(
model
),
params
,
len
(
params
))
predictor
=
paddle_infer
.
create_predictor
(
pred_config
)
for
name
,
_
in
prog_config
.
inputs
.
items
():
input_tensor
=
predictor
.
get_input_handle
(
name
)
input_tensor
.
copy_from_cpu
(
feed_data
[
name
])
predictor
.
run
()
result
=
{}
for
out_name
in
prog_config
.
outputs
:
result
[
out_name
]
=
predictor
.
get_output_handle
(
out_name
).
copy_to_cpu
()
return
result
def
assert_tensors_near
(
self
,
threshold
:
float
,
tensors
:
List
[
Dict
[
str
,
np
.
array
]]):
assert
len
(
tensors
)
>
1
first
=
tensors
[
0
]
for
group
in
tensors
[
1
:]:
for
key
,
arr
in
group
.
items
():
self
.
assertTrue
(
np
.
allclose
(
first
[
key
],
arr
,
atol
=
threshold
),
"Output has diff between GPU and TensorRT. "
)
def
run_test
(
self
):
for
prog_config
in
self
.
sample_program_configs
():
model
,
params
=
create_fake_model
(
prog_config
)
for
batch_size
in
self
.
batch_size_set
:
feed_data
=
{}
for
name
,
tensor_config
in
prog_config
.
inputs
.
items
():
tensor_shape
=
tensor_config
.
shape
.
copy
()
tensor_shape
[
0
]
=
batch_size
feed_data
[
name
]
=
np
.
random
.
random
(
tensor_shape
).
astype
(
tensor_config
.
dtype
)
results
:
List
[
Dict
[
str
,
Tensor
]]
=
[]
for
pred_config
in
self
.
sample_predictor_configs
():
results
.
append
(
self
.
run_test_config
(
model
,
params
,
prog_config
,
pred_config
,
feed_data
))
self
.
assert_tensors_near
(
threshold
=
self
.
threshold
,
tensors
=
results
)
python/paddle/fluid/tests/unittests/ir/inference/program_config.py
0 → 100644
浏览文件 @
255fc7d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle
import
compat
as
cpt
from
paddle.fluid.initializer
import
NumpyArrayInitializer
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
class
TensorConfig
:
'''
A config builder for a input or a weight.
InputVar's shape can be [-1, xxx], batch_size
'''
def
__init__
(
self
,
shape
:
[
List
[
int
]],
dtype
:
[
str
]
=
"float32"
,
data
:
Optional
[
np
.
array
]
=
None
):
'''
shape: The shape of the tensor.
dtype: The data type of the tensor.
data: The value of WeightVar. for input, it should be None
'''
self
.
shape
=
shape
self
.
dtype
=
dtype
self
.
data
=
data
class
OpConfig
:
''' A config builder for generating a Op. '''
def
__init__
(
self
,
type
:
str
,
inputs
:
Dict
[
str
,
List
[
str
]],
outputs
:
Dict
[
str
,
List
[
str
]],
attrs
:
Dict
[
str
,
Any
]):
self
.
type
=
type
self
.
inputs
=
inputs
self
.
outputs
=
outputs
self
.
attrs
=
attrs
class
ProgramConfig
:
''' A config builder for generating a Program. '''
def
__init__
(
self
,
ops
:
List
[
OpConfig
],
weights
:
Dict
[
str
,
TensorConfig
],
inputs
:
Dict
[
str
,
TensorConfig
],
outputs
:
List
[
str
]):
self
.
ops
=
ops
self
.
weights
=
weights
self
.
inputs
=
inputs
self
.
outputs
=
outputs
def
create_fake_model
(
program_config
):
''' Create a Paddle model(in memory) according to the given config. '''
paddle
.
enable_static
()
main_program_desc
=
core
.
ProgramDesc
()
util_program
=
fluid
.
Program
()
main_block_desc
=
main_program_desc
.
block
(
0
)
var_desc
=
main_block_desc
.
var
(
cpt
.
to_bytes
(
"feed"
))
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
FEED_MINIBATCH
)
var_desc
.
set_persistable
(
True
)
index
=
0
for
name
,
tensor_config
in
program_config
.
inputs
.
items
():
var_desc
=
main_block_desc
.
var
(
cpt
.
to_bytes
(
name
))
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
var_desc
.
set_dtype
(
convert_np_dtype_to_dtype_
(
tensor_config
.
dtype
))
var_desc
.
set_shape
(
tensor_config
.
shape
)
var_desc
.
set_need_check_feed
(
True
)
op_desc
=
main_block_desc
.
_prepend_op
()
op_desc
.
set_type
(
"feed"
)
op_desc
.
set_input
(
'X'
,
[
"feed"
])
op_desc
.
set_output
(
'Out'
,
[
name
])
op_desc
.
_set_attr
(
"col"
,
index
)
index
=
index
+
1
save_var_map
=
{}
for
name
,
tensor_config
in
program_config
.
weights
.
items
():
var_desc
=
main_block_desc
.
var
(
cpt
.
to_bytes
(
name
))
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
var_desc
.
set_dtype
(
convert_np_dtype_to_dtype_
(
tensor_config
.
dtype
))
var_desc
.
set_shape
(
tensor_config
.
shape
)
var_desc
.
set_persistable
(
True
)
save_var_map
[
name
]
=
util_program
.
global_block
().
create_parameter
(
dtype
=
tensor_config
.
dtype
,
shape
=
tensor_config
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
name
=
name
,
initializer
=
NumpyArrayInitializer
(
tensor_config
.
data
))
in_vars
=
[]
for
name
in
sorted
(
save_var_map
.
keys
()):
in_vars
.
append
(
save_var_map
[
name
])
out_var
=
util_program
.
global_block
().
create_var
(
type
=
core
.
VarDesc
.
VarType
.
RAW
,
name
=
"out_var_0"
)
out_var
.
desc
.
set_persistable
(
True
)
util_program
.
global_block
().
append_op
(
type
=
'save_combine'
,
inputs
=
{
'X'
:
in_vars
},
outputs
=
{
'Y'
:
out_var
},
attrs
=
{
'file_path'
:
''
,
'save_to_memory'
:
True
})
for
op_config
in
program_config
.
ops
:
op_desc
=
main_block_desc
.
append_op
()
op_desc
.
set_type
(
op_config
.
type
)
for
name
,
values
in
op_config
.
inputs
.
items
():
op_desc
.
set_input
(
name
,
values
)
for
name
,
values
in
op_config
.
attrs
.
items
():
op_desc
.
_set_attr
(
name
,
values
)
for
name
,
values
in
op_config
.
outputs
.
items
():
op_desc
.
set_output
(
name
,
values
)
var_desc
=
main_block_desc
.
var
(
cpt
.
to_bytes
(
name
))
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
op_desc
.
infer_var_type
(
main_block_desc
)
op_desc
.
infer_shape
(
main_block_desc
)
for
index
,
name
in
enumerate
(
program_config
.
outputs
):
var_desc
=
main_block_desc
.
var
(
cpt
.
to_bytes
(
"fetch"
))
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
FETCH_LIST
)
var_desc
.
set_need_check_feed
(
True
)
op_desc
=
main_block_desc
.
append_op
()
op_desc
.
set_type
(
"fetch"
)
op_desc
.
set_input
(
'X'
,
[
name
])
op_desc
.
set_output
(
'Out'
,
[
"fetch"
])
op_desc
.
_set_attr
(
"col"
,
index
)
main_program_desc
.
_set_version
()
paddle
.
fluid
.
core
.
save_op_version_info
(
main_program_desc
)
model
=
main_program_desc
.
serialize_to_string
()
util_program
.
_sync_with_cpp
()
place
=
fluid
.
CPUPlace
()
executor
=
fluid
.
Executor
(
place
)
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
executor
.
run
(
util_program
)
params
=
scope
.
find_var
(
"out_var_0"
).
get_bytes
()
return
model
,
params
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
0 → 100644
浏览文件 @
255fc7d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
from
program_config
import
TensorConfig
import
numpy
as
np
class
TrtConvertConv2dTest
(
TrtLayerAutoScanTest
):
def
setUp
(
self
):
self
.
ops_config
=
[{
"op_type"
:
"conv2d"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
],
"Filter"
:
[
"conv2d_weight"
]
},
"op_outputs"
:
{
"Output"
:
[
"conv_output_data"
]
},
"op_attrs"
:
{
"data_format"
:
[
"NCHW"
],
"dilations"
:
[[
1
,
1
]],
"padding_algorithm"
:
[
"EXPLICIT"
],
"groups"
:
[
1
],
"paddings"
:
[[
0
,
3
],
[
3
,
1
]],
"strides"
:
[[
1
,
1
],
[
2
,
2
]],
}
},
{
"op_type"
:
"relu"
,
"op_inputs"
:
{
"X"
:
[
"conv_output_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"relu_output_data"
]
},
"op_attrs"
:
{}
}]
self
.
batch_size_set
=
[
1
,
2
,
4
]
def
update_program_input_and_weight_with_attr
(
self
,
op_attr_list
):
weight
=
np
.
random
.
randn
(
24
,
3
,
3
,
3
).
astype
(
"float32"
)
filter
=
TensorConfig
(
shape
=
[
24
,
3
,
3
,
3
],
data
=
weight
)
if
op_attr_list
[
0
][
"data_format"
]
==
"NCHW"
:
input_data
=
TensorConfig
(
shape
=
[
-
1
,
3
,
64
,
64
])
else
:
input_data
=
TensorConfig
(
shape
=
[
-
1
,
64
,
64
,
3
])
self
.
program_weights
=
{
"conv2d_weight"
:
filter
}
self
.
program_inputs
=
{
"input_data"
:
input_data
}
self
.
program_outputs
=
[
"relu_output_data"
]
def
test_check_output
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
0 → 100644
浏览文件 @
255fc7d8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
itertools
import
abc
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.inference
as
paddle_infer
from
paddle
import
compat
as
cpt
from
typing
import
*
from
program_config
import
TensorConfig
,
OpConfig
,
ProgramConfig
from
auto_scan_test
import
AutoScanTest
class
TrtLayerAutoScanTest
(
AutoScanTest
):
class
TensorRTParam
:
'''
TensorRT subgraph engine parameters.
'''
def
__init__
(
self
,
workspace_size
,
max_batch_size
,
min_subgraph_size
,
precision
,
use_static
,
use_calib_mode
):
self
.
workspace_size
=
workspace_size
self
.
max_batch_size
=
max_batch_size
self
.
min_subgraph_size
=
min_subgraph_size
self
.
precision
=
precision
self
.
use_static
=
use_static
self
.
use_calib_mode
=
use_calib_mode
def
__init__
(
self
,
methodName
=
'runTest'
):
super
(
TrtLayerAutoScanTest
,
self
).
__init__
(
methodName
)
self
.
trt_param
=
self
.
TensorRTParam
(
workspace_size
=
0
,
max_batch_size
=
4
,
min_subgraph_size
=
0
,
precision
=
paddle_infer
.
PrecisionType
.
Float32
,
use_static
=
False
,
use_calib_mode
=
False
)
def
update_program_input_and_weight_with_attr
(
self
,
op_attr_list
):
raise
NotImplementedError
@
abc
.
abstractmethod
def
sample_program_configs
(
self
):
all_op_attrs_keys
=
[]
all_op_attrs_values
=
[]
for
op_config
in
self
.
ops_config
:
all_op_attrs_keys
.
append
(
list
(
op_config
[
"op_attrs"
].
keys
()))
all_op_attrs_values
.
extend
(
list
(
op_config
[
"op_attrs"
].
values
()))
if
len
(
all_op_attrs_values
)
==
0
:
all_op_attrs_values
.
append
([
None
])
for
attrs_sample
in
itertools
.
product
(
*
all_op_attrs_values
):
op_attr_list
=
[]
index
=
0
ops
=
[]
for
op_config
in
self
.
ops_config
:
op_attr
=
dict
(
zip
(
list
(
op_config
[
"op_attrs"
].
keys
()),
attrs_sample
[
index
:
index
+
len
(
op_config
[
"op_attrs"
])]))
op_attr_list
.
append
(
op_attr
)
index
=
index
+
len
(
op_config
[
"op_attrs"
])
ops
.
append
(
OpConfig
(
type
=
op_config
[
"op_type"
],
inputs
=
op_config
[
"op_inputs"
],
outputs
=
op_config
[
"op_outputs"
],
attrs
=
op_attr
))
self
.
update_program_input_and_weight_with_attr
(
op_attr_list
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
self
.
program_weights
,
inputs
=
self
.
program_inputs
,
outputs
=
self
.
program_outputs
)
yield
program_config
def
create_program_config
(
self
,
use_trt
=
True
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Float32
):
config
=
paddle_infer
.
Config
()
config
.
enable_use_gpu
(
100
,
0
)
if
use_trt
:
config
.
enable_tensorrt_engine
(
max_batch_size
=
self
.
trt_param
.
max_batch_size
,
workspace_size
=
self
.
trt_param
.
workspace_size
,
min_subgraph_size
=
self
.
trt_param
.
min_subgraph_size
,
precision_mode
=
precision_mode
,
use_static
=
self
.
trt_param
.
use_static
,
use_calib_mode
=
self
.
trt_param
.
use_calib_mode
)
return
config
@
abc
.
abstractmethod
def
sample_predictor_configs
(
self
):
yield
self
.
create_program_config
(
use_trt
=
False
)
yield
self
.
create_program_config
(
use_trt
=
True
,
precision_mode
=
self
.
trt_param
.
precision
)
if
self
.
trt_param
.
precision
==
paddle_infer
.
PrecisionType
.
Float32
:
yield
self
.
create_program_config
(
use_trt
=
True
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Half
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录