logic.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19
from ..fluid.framework import in_dygraph_mode
Z
zhulei 已提交
20
from ..framework import VarBase as Tensor
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27 28 29
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401

from paddle.common_ops_import import core
30

31 32
__all__ = []

33

W
wawltor 已提交
34
def equal_all(x, y, name=None):
35 36 37
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
38
    **NOTICE**: The output of this OP has no gradient.
39 40

    Args:
W
wawltor 已提交
41 42 43 44
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
45 46

    Returns:
W
wawltor 已提交
47
        Tensor: output Tensor, data type is bool, value is [False] or [True].
48 49 50 51 52

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
53

54 55 56
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
57
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
58
          print(result1) # result1 = [True ]
W
wawltor 已提交
59
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
60
          print(result2) # result2 = [False ]
61
    """
W
wawltor 已提交
62 63

    helper = LayerHelper("equal_all", **locals())
64 65
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
66 67
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
68
    return out
Z
Zhen Wang 已提交
69 70 71


@templatedoc()
72
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
73 74 75 76
    """
    ${comment}

    Args:
77 78
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
79 80
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
81 82 83
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
84 85

    Returns:
86 87 88 89 90 91 92 93
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
94 95 96 97 98 99

    Examples:
        .. code-block:: python

          import paddle

100 101
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
102
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
103
                                  equal_nan=False, name="ignore_nan")
104 105 106
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
107
                                      equal_nan=True, name="equal_nan")
108 109 110
          np_result2 = result2.numpy()
          # [False]

111 112
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
113 114 115 116 117 118 119 120
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
121 122
    """

123
    if in_dygraph_mode():
124 125 126
        return core.ops.allclose(x, y, 'rtol',
                                 str(rtol), 'atol',
                                 str(atol), 'equal_nan', equal_nan)
127 128 129

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
130 131 132 133 134 135 136
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

137
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
138
    outputs = {'Out': out}
139
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
140 141 142 143
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
144 145


W
wawltor 已提交
146 147
@templatedoc()
def equal(x, y, name=None):
148
    """
S
swtkiwi 已提交
149

150
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
151

W
wawltor 已提交
152
    **NOTICE**: The output of this OP has no gradient.
153 154

    Args:
W
wawltor 已提交
155 156
        x(Tensor): Tensor, data type is float32, float64, int32, int64.
        y(Tensor): Tensor, data type is float32, float64, int32, int64.
157 158 159 160
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
161
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
162 163 164 165 166
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
167 168
          import paddle

169 170
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
171
          result1 = paddle.equal(x, y)
N
Noel 已提交
172
          print(result1)  # result1 = [True False False]
173
    """
174 175 176 177 178 179 180 181 182 183 184 185 186 187
    if in_dygraph_mode():
        return core.ops.equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
188
    return out
189

W
wawltor 已提交
190 191 192 193 194

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
195

W
wawltor 已提交
196 197 198 199 200 201 202 203 204 205 206 207
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
208

W
wawltor 已提交
209 210
            import paddle

211 212
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
213
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
214
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
215
    """
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    if in_dygraph_mode():
        return core.ops.greater_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
232 233 234 235 236 237 238
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
239

W
wawltor 已提交
240 241 242 243 244 245 246 247 248 249 250 251
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
252

W
wawltor 已提交
253 254
            import paddle

255 256
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
257
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
258
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
259
    """
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    if in_dygraph_mode():
        return core.ops.greater_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
276 277 278 279 280 281 282
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
283

W
wawltor 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
297

W
wawltor 已提交
298 299
            import paddle

300 301
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
302
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
303
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
304
    """
305 306 307 308 309 310 311 312 313 314 315 316 317 318
    if in_dygraph_mode():
        return core.ops.less_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
319 320 321 322 323 324 325
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
326

W
wawltor 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
340

W
wawltor 已提交
341 342
            import paddle

343 344
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
345
            result1 = paddle.less_than(x, y)
N
Noel 已提交
346
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
347
    """
348 349 350 351 352 353 354 355 356 357 358 359 360 361
    if in_dygraph_mode():
        return core.ops.less_than(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
362 363 364 365 366 367 368
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
369
    
W
wawltor 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382
    **NOTICE**: The output of this OP has no gradient.

    Args:
        x(Tensor): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
383

W
wawltor 已提交
384 385
            import paddle

386 387
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
388
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
389
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
390
    """
391 392 393 394 395 396 397 398 399 400 401 402 403 404
    if in_dygraph_mode():
        return core.ops.not_equal(x, y)

    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
405
    return out
Z
zhulei 已提交
406 407 408 409 410


def is_tensor(x):
    """

C
chentianyu03 已提交
411
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
412 413 414 415 416

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
417
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
C
chentianyu03 已提交
433
    return isinstance(x, Tensor)