cross_entropy_op.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
18
#include "paddle/fluid/operators/math.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/for_range.h"
Q
Qiao Longfei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27
using Tensor = framework::Tensor;

28
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
29
class CrossEntropyOpKernel : public framework::OpKernel<T> {
30
 public:
D
dongzhihong 已提交
31
  void Compute(const framework::ExecutionContext& ctx) const override {
32 33 34
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* y = ctx.Output<Tensor>("Y");
35
    y->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
36

37
    int rank = x->dims().size();
38
    auto label_dims = labels->dims();
F
fengjiayi 已提交
39
    Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1);
40 41 42 43 44 45 46 47 48 49 50 51
    Tensor labels_2d, y_2d;
    if (label_dims.size() < rank) {
      labels_2d.ShareDataWith(*labels);
      labels_2d.Resize({framework::product(label_dims), 1});

      y_2d.ShareDataWith(*y);
      y_2d.Resize({framework::product(y->dims()), 1});

    } else {
      labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
      y_2d = framework::ReshapeToMatrix(*y, rank - 1);
    }
52

53
    int axis_dim = x->dims()[rank - 1];
54
    math::CrossEntropyFunctor<DeviceContext, T>()(
55
        ctx.template device_context<DeviceContext>(), &y_2d, &x_2d, &labels_2d,
56
        ctx.Attr<bool>("soft_label"), ctx.Attr<int>("ignore_index"), axis_dim);
Y
Yan Chunwei 已提交
57 58 59
  }
};

60
template <typename T>
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class XeSoftlabelGradFunctor {
 public:
  XeSoftlabelGradFunctor(T* dx,
                         const T* dy,     // NOLINT
                         const T* x,      // NOLINT
                         const T* label,  // NOLINT
                         size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

  HOSTDEVICE void operator()(size_t i) {
    auto row_ids = i / num_classes_;
    dx_[i] = -label_[i] * dy_[row_ids] / x_[i];
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const T* label_;
  size_t num_classes_;
};

template <typename T>
class XeGradFunctor {
 public:
  XeGradFunctor(T* dx,
                const T* dy,           // NOLINT
                const T* x,            // NOLINT
                const int64_t* label,  // NOLINT
90 91 92 93 94 95 96
                size_t num_classes, size_t ignore_index)
      : dx_(dx),
        dy_(dy),
        x_(x),
        label_(label),
        num_classes_(num_classes),
        ignore_index_(ignore_index) {}
97

Y
Yu Yang 已提交
98 99 100 101
  HOSTDEVICE void operator()(size_t sample_id) {
    auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id];
    for (size_t x_offset = sample_id * num_classes_;
         x_offset < (sample_id + 1) * num_classes_; ++x_offset) {
C
chengduoZH 已提交
102 103 104 105
      dx_[x_offset] = (x_offset != x_is_true_offset ||
                       label_[sample_id] == static_cast<int64_t>(ignore_index_))
                          ? static_cast<T>(0)
                          : -dy_[sample_id] / x_[x_offset];
106 107 108 109 110 111 112 113 114
    }
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const int64_t* label_;
  size_t num_classes_;
115
  size_t ignore_index_;
116 117 118
};

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
119
class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
Y
Yan Chunwei 已提交
120
 public:
D
dongzhihong 已提交
121
  void Compute(const framework::ExecutionContext& ctx) const override {
122 123 124 125
    auto* x = ctx.Input<Tensor>("X");
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* label = ctx.Input<Tensor>("Label");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
126
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
127

128 129 130 131
    // Following computation only depends on the last dimension size. So it's
    // unnecessary to convert tensors to 2-D views.
    int rank = x->dims().size();
    int64_t class_num = x->dims()[rank - 1];
132
    int64_t ignore_index = ctx.Attr<int>("ignore_index");
133
    if (ctx.Attr<bool>("soft_label")) {
134 135 136 137 138 139 140
      XeSoftlabelGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
                                        label->data<T>(),
                                        static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dx->numel()));
      for_range(functor);
141
    } else {
142 143 144
      XeGradFunctor<T> functor(
          dx_data, dy->data<T>(), x->data<T>(), label->data<int64_t>(),
          static_cast<size_t>(class_num), static_cast<size_t>(ignore_index));
145 146 147 148
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dy->numel()));
      for_range(functor);
Q
Qiao Longfei 已提交
149 150 151 152
    }
  }
};

S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
template <typename T>
struct HardLabelCrossEntropyForwardFunctor {
  HardLabelCrossEntropyForwardFunctor(const T* x, T* y, T* match_x,
                                      const int64_t* label,
                                      int64_t ignore_index,
                                      int64_t feature_size)
      : x_(x),
        y_(y),
        match_x_(match_x),
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto label = label_[idx];
    if (label != ignore_index_) {
169 170
      // don't update to PADDLE_ENFORCE_GE and PADDLE_ENFORCE_LT cause
      // can't use platform::errors::InvalidArgument in HOSTDEVICE
171 172 173 174 175
      PADDLE_ENFORCE(label >= 0 && label < feature_size_,
                     "Variable value (label) of "
                     "OP(fluid.layers.cross_entropy) expected >= 0 "
                     "and < %ld, but got %ld. Please check label value.",
                     feature_size_, label);
176

S
sneaxiy 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      auto match_x = x_[idx * feature_size_ + label];
      y_[idx] = -math::TolerableValue<T>()(real_log(match_x));
      match_x_[idx] = match_x;
    } else {
      y_[idx] = 0;
      match_x_[idx] = 0;  // any value is ok
    }
  }

  const T* x_;
  T* y_;
  T* match_x_;
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

S
sneaxiy 已提交
194 195
template <typename T>
struct HardLabelCrossEntropyBackwardFunctor {
S
sneaxiy 已提交
196
  HardLabelCrossEntropyBackwardFunctor(T* dx, const T* dy, const T* match_x,
S
sneaxiy 已提交
197 198 199 200 201
                                       const int64_t* label,
                                       int64_t ignore_index,
                                       int64_t feature_size)
      : dx_(dx),
        dy_(dy),
S
sneaxiy 已提交
202
        match_x_(match_x),
S
sneaxiy 已提交
203 204 205 206 207 208 209 210 211
        label_(label),
        ignore_index_(ignore_index),
        feature_size_(feature_size) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    auto row_idx = idx / feature_size_;
    auto col_idx = idx % feature_size_;
    auto label = label_[row_idx];
    if (label == col_idx && label != ignore_index_) {
S
sneaxiy 已提交
212
      dx_[idx] = -dy_[row_idx] / match_x_[row_idx];
S
sneaxiy 已提交
213 214 215 216 217 218 219
    } else {
      dx_[idx] = 0;
    }
  }

  T* dx_;
  const T* dy_;
S
sneaxiy 已提交
220
  const T* match_x_;
S
sneaxiy 已提交
221 222 223 224 225 226 227 228 229
  const int64_t* label_;
  int64_t ignore_index_;
  int64_t feature_size_;
};

template <typename DeviceContext, typename T>
class CrossEntropyOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
230 231
    auto* x = ctx.Input<Tensor>("X");
    auto* label = ctx.Input<Tensor>("Label");
S
sneaxiy 已提交
232
    auto* y = ctx.Output<Tensor>("Y");
S
sneaxiy 已提交
233 234 235 236 237 238 239 240 241 242
    auto* match_x = ctx.Output<Tensor>("MatchX");

    auto& x_dims = x->dims();
    auto feature_size = x_dims[x_dims.size() - 1];
    auto batch_size = framework::product(x->dims()) / feature_size;

    auto* p_x = x->data<T>();
    auto* p_label = label->data<int64_t>();
    auto* p_y = y->mutable_data<T>(ctx.GetPlace());
    auto* p_match_x = match_x->mutable_data<T>(ctx.GetPlace());
S
sneaxiy 已提交
243 244 245

    auto ignore_index = ctx.Attr<int>("ignore_index");

S
sneaxiy 已提交
246 247 248 249
    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(), batch_size);
    for_range(HardLabelCrossEntropyForwardFunctor<T>(
        p_x, p_y, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
250 251 252 253 254 255 256 257 258
  }
};

template <typename DeviceContext, typename T>
class CrossEntropyGradientOpKernel2 : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
S
sneaxiy 已提交
259
    auto* match_x = ctx.Input<Tensor>("MatchX");
S
sneaxiy 已提交
260 261 262 263
    auto* label = ctx.Input<Tensor>("Label");

    auto* p_dx = dx->mutable_data<T>(ctx.GetPlace());
    auto* p_dy = dy->data<T>();
S
sneaxiy 已提交
264
    auto* p_match_x = match_x->data<T>();
S
sneaxiy 已提交
265 266 267 268 269 270 271 272 273 274 275
    auto* p_label = label->data<int64_t>();

    int64_t ignore_index = ctx.Attr<int>("ignore_index");
    int rank = dx->dims().size();
    int64_t feature_size = dx->dims()[rank - 1];
    int64_t batch_size = framework::product(dx->dims()) / feature_size;

    platform::ForRange<DeviceContext> for_range(
        ctx.template device_context<DeviceContext>(),
        batch_size * feature_size);
    for_range(HardLabelCrossEntropyBackwardFunctor<T>(
S
sneaxiy 已提交
276
        p_dx, p_dy, p_match_x, p_label, ignore_index, feature_size));
S
sneaxiy 已提交
277 278 279
  }
};

Q
Qiao Longfei 已提交
280 281
}  // namespace operators
}  // namespace paddle