hogwild_worker.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
34

35 36 37
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }
D
dongdaxiang 已提交
38 39
}

40 41
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
42
  op_names_.clear();
43
  for (auto &op_desc : block.AllOps()) {
44 45
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
46
    OperatorBase *local_op_ptr = local_op.release();
47 48 49 50 51
    ops_.push_back(local_op_ptr);
    continue;
  }
}

52 53
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
54 55 56 57 58

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
59 60

  for (auto &var : block.AllVars()) {
61
    all_param_.push_back(var->Name());
62
    if (var->Persistable()) {
63
      auto *ptr = root_scope_->Var(var->Name());
64
      InitializeVariable(ptr, var->GetType());
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
82
    } else {
83
      auto *ptr = thread_scope_->Var(var->Name());
84 85 86 87 88
      InitializeVariable(ptr, var->GetType());
    }
  }
}

89 90 91 92 93 94 95
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

96
void HogwildWorker::BindingDataFeedMemory() {
97
  const std::vector<std::string> &input_feed =
98
      device_reader_->GetUseSlotAlias();
99
  for (auto name : input_feed) {
100
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
101 102 103
  }
}

104
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
105 106 107 108 109 110
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
111
  device_reader_->Start();
112 113
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
114
  for (auto &op : ops_) {
115 116 117 118 119 120 121 122 123 124 125 126
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
127
  uint64_t total_inst = 0;
128
  while ((cur_batch = device_reader_->Next()) > 0) {
129
    VLOG(3) << "read a batch in thread " << thread_id_;
130 131 132 133
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
134 135 136 137 138 139 140
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
141
      timeline.Start();
142
      VLOG(3) << "Going to run op " << op_name[i];
143 144 145
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
146
      VLOG(3) << "Op " << op_name[i] << " Finished";
147 148 149 150
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
151 152

    if (need_dump_field_) {
H
hutuxian 已提交
153 154 155 156
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
157 158
    }

D
dongdaxiang 已提交
159
    total_inst += cur_batch;
160
    ++batch_cnt;
D
dongdaxiang 已提交
161
    PrintFetchVars();
162 163 164 165 166 167 168
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
169
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
170
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
171 172
      }
    }
D
dongdaxiang 已提交
173
    thread_scope_->DropKids();
174 175
    timeline.Start();
  }
176

H
hutuxian 已提交
177
  if (need_dump_field_ || need_dump_param_) {
178 179 180
    writer_.Flush();
  }

181 182 183 184 185 186
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
187 188 189 190 191 192
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
193
  device_reader_->Start();
194
  int cur_batch;
195
  while ((cur_batch = device_reader_->Next()) > 0) {
196
    for (auto &op : ops_) {
197 198 199 200 201 202 203 204 205 206
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
207 208
    }

D
dongdaxiang 已提交
209
    PrintFetchVars();
D
dongdaxiang 已提交
210
    thread_scope_->DropKids();
211
  }
212 213 214 215 216 217
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
218 219
}

D
dongdaxiang 已提交
220 221 222 223
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
224
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
225 226
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
227
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
228
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
229
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
230 231 232 233 234
      }
    }
  }
}

235 236
}  // end namespace framework
}  // end namespace paddle