hogwild_worker.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
18
#include "paddle/fluid/platform/lodtensor_printer.h"
19 20 21 22

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
23 24 25 26 27 28 29 30
void HogwildWorker::Initialize(const TrainerDesc& desc) {
  fetch_var_names_.resize(desc.fetch_var_names_size());
  for (size_t i = 0; i < desc.fetch_var_names_size(); ++i) {
    fetch_var_names_[i] = desc.fetch_var_names(i);
  }
  batch_cnt_per_print_ = static_cast<int>(desc.batch_per_print());
}

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
void HogwildWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void HogwildWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void HogwildWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
63
      device_reader_->GetUseSlotAlias();
64
  for (auto name : input_feed) {
65
    device_reader_->AddFeedVar(thread_scope_->Var(name), name);
66 67 68 69 70 71 72 73 74 75
  }
}

void HogwildWorker::CreateDeviceResource(const ProgramDesc& main_prog) {
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
76
  device_reader_->Start();
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
92
  while ((cur_batch = device_reader_->Next()) > 0) {
93
    VLOG(3) << "read a batch in thread " << thread_id_;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
      timeline.Start();
      ops_[i]->Run(*thread_scope_, place_);
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
    ++batch_cnt;
    thread_scope_->DropKids();
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
113
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
114 115 116 117 118 119 120 121 122 123
      }
    }
    timeline.Start();
  }
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
124
  device_reader_->Start();
125 126
  int cur_batch;
  int batch_cnt = 0;
127
  while ((cur_batch = device_reader_->Next()) > 0) {
128 129 130 131 132 133 134 135 136
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();
  }
}

D
dongdaxiang 已提交
137 138 139 140 141 142 143 144 145 146 147
void HogwildWorker::PrintFetchVars(int batch_cnt) {
  if (thread_id_ == 0) {
    if (batch_cnt > 0 && batch_cnt % batch_cnt_per_print_ == 0) {
      int fetch_var_num = fetch_var_names_.size();
      for (int i = 0; i < fetch_var_num; ++i) {
        platform::PrintVar(thread_scope_, fetch_var_names_[i], "None");
      }
    }
  }
}

148 149
}  // end namespace framework
}  // end namespace paddle