executor_test.cc 10.0 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16 17

#include <memory>
Q
qijun 已提交
18
#include <vector>
Y
Yang Yang 已提交
19

Y
Yang Yang 已提交
20
#include "gtest/gtest.h"
Y
Yang Yang 已提交
21
#include "paddle/framework/attribute.h"
Y
Yang Yang 已提交
22
#include "paddle/framework/backward.h"
Y
Yang Yang 已提交
23 24
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
Y
Yang Yang 已提交
25 26 27 28
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

USE_OP(elementwise_add);
Y
Yang Yang 已提交
29
USE_OP(gaussian_random);
Q
qijun 已提交
30
USE_OP(feed);
Q
qijun 已提交
31
USE_OP(fetch);
Y
Yang Yang 已提交
32
USE_OP(mul);
Y
Yang Yang 已提交
33
USE_OP(squared_l2_distance);
Q
qijun 已提交
34

Y
Yang Yang 已提交
35
using std::string;
Q
qijun 已提交
36 37 38
using namespace paddle::platform;
using namespace paddle::framework;

Y
Yang Yang 已提交
39 40
void AddOp(const std::string& type, const VariableNameMap& inputs,
           const VariableNameMap& outputs, AttributeMap attrs,
Y
Yang Yang 已提交
41
           paddle::framework::BlockDescBind* block) {
Y
Yang Yang 已提交
42 43 44
  // insert output
  for (auto kv : outputs) {
    for (auto v : kv.second) {
Y
Yang Yang 已提交
45 46
      auto var = block->NewVar(v);
      var->SetDataType(paddle::framework::DataType::FP32);
Y
Yang Yang 已提交
47 48 49 50
    }
  }

  // insert op
Y
Yang Yang 已提交
51 52
  auto op = block->AppendOp();
  op->SetType(type);
Y
Yang Yang 已提交
53
  for (auto& kv : inputs) {
Y
Yang Yang 已提交
54
    op->SetInput(kv.first, kv.second);
Y
Yang Yang 已提交
55
  }
Y
Yang Yang 已提交
56
  for (auto& kv : outputs) {
Y
Yang Yang 已提交
57
    op->SetOutput(kv.first, kv.second);
Y
Yang Yang 已提交
58
  }
Y
Yang Yang 已提交
59
  op->SetAttrMap(attrs);
Y
Yang Yang 已提交
60 61
}

Q
qijun 已提交
62 63
std::once_flag set_variable_flag;

Y
Yang Yang 已提交
64 65
// Tensors in feed value variable will only be in CPUPlace
// So we can  memcpy the data from vector<T> to feed_value
Q
qijun 已提交
66
template <typename T>
Y
Yang Yang 已提交
67
void SetFeedVariable(const std::vector<std::vector<T>>& inputs) {
Q
qijun 已提交
68
  typedef std::vector<paddle::framework::Tensor> FeedInputs;
69
  Variable* g_feed_value = GetGlobalScope()->FindVar("feed_value");
Q
qijun 已提交
70
  FeedInputs& feed_inputs = *(g_feed_value->GetMutable<FeedInputs>());
Y
Yang Yang 已提交
71
  size_t size = inputs.size();
72
  feed_inputs.resize(size);
Q
qijun 已提交
73
  for (size_t i = 0; i < size; i++) {
74 75 76
    T* dst = feed_inputs[i].mutable_data<T>(
        make_ddim({static_cast<int64_t>(inputs[i].size())}), CPUPlace());
    memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
Q
qijun 已提交
77 78 79
  }
}

Y
Yang Yang 已提交
80 81
// Tensors in fetch value variable will only be in CPUPlace
// So we can memcpy the data from fetch_value to vector<T>
Q
qijun 已提交
82
template <typename T>
Y
Yang Yang 已提交
83
std::vector<std::vector<T>> GetFetchVariable() {
Q
qijun 已提交
84
  typedef std::vector<paddle::framework::Tensor> FetchOutputs;
85
  Variable* g_fetch_value = GetGlobalScope()->FindVar("fetch_value");
Q
qijun 已提交
86 87
  FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable<FetchOutputs>());

Y
Yang Yang 已提交
88
  size_t size = fetch_outputs.size();
Q
qijun 已提交
89 90 91 92
  std::vector<std::vector<T>> result;
  result.reserve(size);
  for (size_t i = 0; i < size; i++) {
    std::vector<T> tmp;
93
    tmp.resize(fetch_outputs[i].numel());
Q
qijun 已提交
94 95 96 97
    memcpy(tmp.data(), fetch_outputs[i].data<T>(),
           fetch_outputs[i].numel() * sizeof(T));
    result.push_back(tmp);
  }
Y
Yang Yang 已提交
98

Q
qijun 已提交
99 100 101
  return result;
}

Q
qijun 已提交
102
class ExecutorTesterRandom : public ::testing::Test {
Q
qijun 已提交
103 104
 public:
  virtual void SetUp() override {
Y
Yang Yang 已提交
105 106
    int input_dim = 5, batch_size = 2, embed_dim = 5;

Y
Yang Yang 已提交
107
    // init pdesc
Y
Yang Yang 已提交
108 109 110 111 112 113 114 115 116
    auto temp_init_root_block = init_pdesc_.add_blocks();
    temp_init_root_block->set_idx(0);
    temp_init_root_block->set_parent_idx(-1);

    // wrap to BlockDescBind
    paddle::framework::ProgramDescBind& init_program =
        paddle::framework::ProgramDescBind::Instance(&init_pdesc_);
    paddle::framework::BlockDescBind* init_root_block = init_program.Block(0);

Y
Yang Yang 已提交
117 118 119 120 121
    AddOp("gaussian_random", {}, {{"Out", {"w1"}}},
          {{"dims", std::vector<int>{input_dim, embed_dim}}}, init_root_block);
    AddOp("gaussian_random", {}, {{"Out", {"w2"}}},
          {{"dims", std::vector<int>{embed_dim, input_dim}}}, init_root_block);
    AddOp("fetch", {{"Input", {"w1"}}}, {},
Y
Yang Yang 已提交
122 123
          {{"dims", std::vector<int>{input_dim, embed_dim}}, {"col", 0}},
          init_root_block);
Y
Yang Yang 已提交
124
    AddOp("fetch", {{"Input", {"w2"}}}, {},
Y
Yang Yang 已提交
125 126
          {{"dims", std::vector<int>{embed_dim, input_dim}}, {"col", 1}},
          init_root_block);
Y
Yang Yang 已提交
127 128 129
    // flush
    init_program.Proto();

Y
Yang Yang 已提交
130
    // run pdesc
Y
Yang Yang 已提交
131 132 133
    auto temp_root_block = pdesc_.add_blocks();
    temp_root_block->set_idx(0);
    temp_root_block->set_parent_idx(-1);
Y
Yang Yang 已提交
134

Y
Yang Yang 已提交
135 136 137 138
    // wrap to BlockDescBind
    paddle::framework::ProgramDescBind& program =
        paddle::framework::ProgramDescBind::Instance(&pdesc_);
    paddle::framework::BlockDescBind* root_block = program.Block(0);
Q
qijun 已提交
139

Y
Yang Yang 已提交
140 141 142 143 144 145
    AddOp("gaussian_random", {}, {{"Out", {"a"}}},
          {{"dims", std::vector<int>{batch_size, input_dim}}}, root_block);
    AddOp("mul", {{"X", {"a"}}, {"Y", {"w1"}}}, {{"Out", {"b"}}}, {},
          root_block);
    AddOp("mul", {{"X", {"b"}}, {"Y", {"w2"}}}, {{"Out", {"a_out"}}}, {},
          root_block);
Y
Yang Yang 已提交
146 147
    AddOp("squared_l2_distance", {{"X", {"a"}}, {"Y", {"a_out"}}},
          {{"Out", {"l2_distance"}}, {"sub_result", {"l2_distance_sub"}}}, {},
Y
Yang Yang 已提交
148
          root_block);
Y
Yang Yang 已提交
149 150
    AddOp("fetch", {{"Input", {"l2_distance"}}}, {},
          {{"dims", std::vector<int>{batch_size}}, {"col", 1}}, root_block);
Y
Yang Yang 已提交
151 152 153 154 155
    // flush
    program.Proto();

    // TODO(tonyyang-svail):
    //   - Test with Backward
Q
qijun 已提交
156
  }
Y
Yang Yang 已提交
157

Q
qijun 已提交
158 159
 protected:
  ProgramDesc pdesc_;
Y
Yang Yang 已提交
160
  ProgramDesc init_pdesc_;
Q
qijun 已提交
161 162
};

Y
Yang Yang 已提交
163
class ExecutorTesterFeedAndFetch : public ::testing::Test {
Q
qijun 已提交
164 165
 public:
  virtual void SetUp() override {
Y
Yang Yang 已提交
166 167 168 169 170 171 172 173
    auto temp_root_block = pdesc_.add_blocks();
    temp_root_block->set_idx(0);
    temp_root_block->set_parent_idx(-1);

    // wrap to BlockDescBind
    paddle::framework::ProgramDescBind& program =
        paddle::framework::ProgramDescBind::Instance(&pdesc_);
    paddle::framework::BlockDescBind* root_block = program.Block(0);
Q
qijun 已提交
174

175 176
    std::vector<int> dim{6};

Y
Yang Yang 已提交
177 178 179 180 181 182 183 184
    AddOp("feed", {}, {{"Out", {"a"}}}, {{"dims", dim}, {"col", 0}},
          root_block);
    AddOp("feed", {}, {{"Out", {"b"}}}, {{"dims", dim}, {"col", 1}},
          root_block);
    AddOp("fetch", {{"Input", {"a"}}}, {}, {{"dims", dim}, {"col", 0}},
          root_block);
    AddOp("fetch", {{"Input", {"b"}}}, {}, {{"dims", dim}, {"col", 1}},
          root_block);
Q
qijun 已提交
185

Y
Yang Yang 已提交
186 187 188
    // flush
    program.Proto();

189 190
    std::vector<float> vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    std::vector<float> vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
Q
qijun 已提交
191 192 193 194 195 196 197 198 199
    inputs_.push_back(vec1);
    inputs_.push_back(vec2);
  }

 protected:
  ProgramDesc pdesc_;
  std::vector<std::vector<float>> inputs_;
};

Q
qijun 已提交
200
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
201
TEST_F(ExecutorTesterRandom, CPU) {
Q
qijun 已提交
202
  std::vector<Place> places;
203 204 205 206 207 208 209 210
  CPUPlace cpu_place;
  places.push_back(cpu_place);

  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);
Q
qijun 已提交
211

Y
Yang Yang 已提交
212 213
  std::unique_ptr<Executor> executor(new Executor(places));

Y
Yang Yang 已提交
214
  executor->Run(init_pdesc_, GetGlobalScope());
215
  executor->Run(pdesc_, GetGlobalScope());
Y
Yang Yang 已提交
216
  std::vector<std::vector<float>> result = GetFetchVariable<float>();
Q
qijun 已提交
217 218
}

Y
Yang Yang 已提交
219
TEST_F(ExecutorTesterFeedAndFetch, CPU) {
Q
qijun 已提交
220 221 222 223
  std::vector<Place> places;
  CPUPlace cpu_place;
  places.push_back(cpu_place);

224 225 226 227 228 229
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);

Y
Yang Yang 已提交
230
  std::unique_ptr<Executor> executor(new Executor(places));
Q
qijun 已提交
231

Y
Yang Yang 已提交
232 233
  for (int batch_id = 0; batch_id < 3; batch_id++) {
    SetFeedVariable<float>(inputs_);
234
    executor->Run(pdesc_, GetGlobalScope());
Y
Yang Yang 已提交
235
    std::vector<std::vector<float>> result = GetFetchVariable<float>();
Y
Yang Yang 已提交
236 237 238 239 240
    PADDLE_ENFORCE_EQ(result.size(), inputs_.size());
    for (size_t i = 0; i < result.size(); ++i) {
      PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size());
      for (size_t j = 0; j < result[i].size(); ++j) {
        PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]);
Q
qijun 已提交
241 242
      }
    }
Q
qijun 已提交
243
  }
Q
qijun 已提交
244
}
Q
qijun 已提交
245
#else
Q
qijun 已提交
246 247 248 249 250
TEST_F(ExecutorTesterRandom, GPU) {
  std::vector<Place> places;
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);

Q
qijun 已提交
251 252 253 254 255 256 257
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
258 259
  paddle::memory::Used(gpu_place);

Y
Yang Yang 已提交
260
  std::unique_ptr<Executor> executor(new Executor(places));
Y
Yang Yang 已提交
261 262

  executor->Run(init_pdesc_, GetGlobalScope());
263
  executor->Run(pdesc_, GetGlobalScope());
Y
Yang Yang 已提交
264
  std::vector<std::vector<float>> result = GetFetchVariable<float>();
Q
qijun 已提交
265 266
}

Y
Yang Yang 已提交
267
TEST_F(ExecutorTesterFeedAndFetch, GPU) {
Q
qijun 已提交
268
  std::vector<Place> places;
Q
qijun 已提交
269 270
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);
Q
qijun 已提交
271 272 273 274 275 276 277
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
278 279
  paddle::memory::Used(gpu_place);

Y
Yang Yang 已提交
280
  std::unique_ptr<Executor> executor(new Executor(places));
Q
qijun 已提交
281

Y
Yang Yang 已提交
282 283
  for (int batch_id = 0; batch_id < 3; batch_id++) {
    SetFeedVariable<float>(inputs_);
284
    executor->Run(pdesc_, GetGlobalScope());
Y
Yang Yang 已提交
285
    std::vector<std::vector<float>> result = GetFetchVariable<float>();
Y
Yang Yang 已提交
286 287 288 289 290
    PADDLE_ENFORCE_EQ(result.size(), inputs_.size());
    for (size_t i = 0; i < result.size(); ++i) {
      PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size());
      for (size_t j = 0; j < result[i].size(); ++j) {
        PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]);
Q
qijun 已提交
291 292 293
      }
    }
  }
Y
Yang Yang 已提交
294
}
Q
qijun 已提交
295
#endif