executor_test.cc 13.3 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Q
qijun 已提交
16
#include <vector>
Y
Yang Yang 已提交
17
#include "gtest/gtest.h"
Y
Yang Yang 已提交
18
#include "paddle/framework/attribute.h"
Y
Yang Yang 已提交
19
#include "paddle/framework/block_desc.h"
Y
Yang Yang 已提交
20
#include "paddle/framework/grad_op_builder.h"
Y
Yang Yang 已提交
21
#include "paddle/framework/op_desc.h"
Y
Yang Yang 已提交
22 23 24 25
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"

USE_OP(elementwise_add);
Y
Yang Yang 已提交
26
USE_OP(gaussian_random);
Q
qijun 已提交
27
USE_OP(feed);
Q
qijun 已提交
28
USE_OP(fetch);
Y
Yang Yang 已提交
29
USE_OP(mul);
Q
qijun 已提交
30

Y
Yang Yang 已提交
31
using std::string;
Q
qijun 已提交
32 33 34
using namespace paddle::platform;
using namespace paddle::framework;

Y
Yang Yang 已提交
35 36 37
typedef paddle::framework::BlockDesc proto_block;
typedef paddle::framework::OpDesc proto_op;

Y
Yang Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
struct SetAttrDescVisitor : public boost::static_visitor<void> {
  explicit SetAttrDescVisitor(OpDesc::Attr* attr) : attr_(attr) {}
  mutable OpDesc::Attr* attr_;
  void operator()(int v) const { attr_->set_i(v); }
  void operator()(float v) const { attr_->set_f(v); }
  void operator()(const std::string& v) const { attr_->set_s(v); }
  void operator()(bool b) const { attr_->set_b(b); }

  void operator()(const std::vector<int>& v) const {
    VectorToRepeated(v, attr_->mutable_ints());
  }
  void operator()(const std::vector<float>& v) const {
    VectorToRepeated(v, attr_->mutable_floats());
  }
  void operator()(const std::vector<std::string>& v) const {
    VectorToRepeated(v, attr_->mutable_strings());
  }
  void operator()(const std::vector<bool>& v) const {
    VectorToRepeated(v, attr_->mutable_bools());
  }
  void operator()(BlockDesc* desc) const { attr_->set_block_idx(desc->idx()); }
  void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); }
};

void AddOp(const std::string& type, const VariableNameMap& inputs,
           const VariableNameMap& outputs, AttributeMap attrs,
           proto_block* block) {
  // insert output
  for (auto kv : outputs) {
    for (auto v : kv.second) {
      auto var = block->add_vars();
      var->set_name(v);
      auto var_lt = var->mutable_lod_tensor();
      var_lt->set_data_type(paddle::framework::DataType::FP32);
    }
  }

  // insert op
  auto op = block->add_ops();
  op->set_type(type);
  for (auto kv : inputs) {
    auto X = op->add_inputs();
    X->set_parameter(kv.first);
    for (auto argu : kv.second) {
      X->add_arguments(argu);
    }
  }
  for (auto kv : outputs) {
    auto X = op->add_outputs();
    X->set_parameter(kv.first);
    for (auto argu : kv.second) {
      X->add_arguments(argu);
    }
  }
  for (auto& attr : attrs) {
    auto* attr_desc = op->add_attrs();
    attr_desc->set_name(attr.first);
    attr_desc->set_type(
        static_cast<paddle::framework::AttrType>(attr.second.which() - 1));
    SetAttrDescVisitor visitor(attr_desc);
    boost::apply_visitor(visitor, attr.second);
  }
}

void add_gaussian_random_op(string var_name, std::vector<int> dim,
103
                            proto_block* block) {
Y
Yang Yang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("gaussian_random");
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }
  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

127 128
void add_feed_op(string var_name, std::vector<int>& dim, int index,
                 proto_block* block) {
Q
qijun 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("feed");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(var_name);
}

Y
Yang Yang 已提交
161
void add_fetch_op(string var_name, std::vector<int> dim, int index,
162
                  proto_block* block) {
Q
qijun 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  // insert variable
  auto a = block->add_vars();
  a->set_name(var_name);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);
  for (int i : dim) {
    a_lt->add_dims(i);
  }

  // insert operation
  auto op = block->add_ops();
  op->set_type("fetch");

  // set dims attr
  auto dims = op->add_attrs();
  dims->set_name("dims");
  dims->set_type(paddle::framework::AttrType::INTS);
  for (int i : dim) {
    dims->add_ints(i);
  }

  // set col attr
  auto col = op->add_attrs();
  col->set_name("col");
  col->set_type(paddle::framework::AttrType::INT);
  col->set_i(index);

  auto Out = op->add_inputs();
  Out->set_parameter("Input");
  Out->add_arguments(var_name);
}

Y
Yang Yang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
void add_mul_op(string X_str, string Y_str, string Out_str,
                proto_block* block) {
  // insert variable
  auto a = block->add_vars();
  a->set_name(Out_str);
  auto a_lt = a->mutable_lod_tensor();
  a_lt->set_data_type(paddle::framework::DataType::FP32);

  // insert op
  auto op = block->add_ops();
  op->set_type("mul");
  auto X = op->add_inputs();
  X->set_parameter("X");
  X->add_arguments(X_str);
  auto Y = op->add_inputs();
  Y->set_parameter("Y");
  Y->add_arguments(Y_str);
  auto Out = op->add_outputs();
  Out->set_parameter("Out");
  Out->add_arguments(Out_str);
}

Q
qijun 已提交
217 218
std::once_flag set_variable_flag;

Y
Yang Yang 已提交
219 220
// Tensors in feed value variable will only be in CPUPlace
// So we can  memcpy the data from vector<T> to feed_value
Q
qijun 已提交
221 222 223
template <typename T>
void set_feed_variable(const std::vector<std::vector<T>>& inputs) {
  typedef std::vector<paddle::framework::Tensor> FeedInputs;
224
  Variable* g_feed_value = GetGlobalScope()->FindVar("feed_value");
Q
qijun 已提交
225 226
  FeedInputs& feed_inputs = *(g_feed_value->GetMutable<FeedInputs>());
  auto size = inputs.size();
227
  feed_inputs.resize(size);
Q
qijun 已提交
228
  for (size_t i = 0; i < size; i++) {
229 230 231
    T* dst = feed_inputs[i].mutable_data<T>(
        make_ddim({static_cast<int64_t>(inputs[i].size())}), CPUPlace());
    memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
Q
qijun 已提交
232 233 234
  }
}

Y
Yang Yang 已提交
235 236
// Tensors in fetch value variable will only be in CPUPlace
// So we can memcpy the data from fetch_value to vector<T>
Q
qijun 已提交
237 238 239
template <typename T>
std::vector<std::vector<T>> get_fetch_variable() {
  typedef std::vector<paddle::framework::Tensor> FetchOutputs;
240
  Variable* g_fetch_value = GetGlobalScope()->FindVar("fetch_value");
Q
qijun 已提交
241 242
  FetchOutputs& fetch_outputs = *(g_fetch_value->GetMutable<FetchOutputs>());

243
  auto size = fetch_outputs.size();
Q
qijun 已提交
244 245 246 247
  std::vector<std::vector<T>> result;
  result.reserve(size);
  for (size_t i = 0; i < size; i++) {
    std::vector<T> tmp;
248
    tmp.resize(fetch_outputs[i].numel());
Q
qijun 已提交
249 250 251 252
    memcpy(tmp.data(), fetch_outputs[i].data<T>(),
           fetch_outputs[i].numel() * sizeof(T));
    result.push_back(tmp);
  }
Y
Yang Yang 已提交
253

Q
qijun 已提交
254 255 256
  return result;
}

Q
qijun 已提交
257
class ExecutorTesterRandom : public ::testing::Test {
Q
qijun 已提交
258 259
 public:
  virtual void SetUp() override {
Y
Yang Yang 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    int input_dim = 5, batch_size = 2, embed_dim = 5;

    // init pdesc
    auto init_root_block = init_pdesc_.add_blocks();
    init_root_block->set_idx(0);
    init_root_block->set_parent_idx(-1);
    AddOp("gaussian_random", {}, {{"Out", {"w1"}}},
          {{"dims", std::vector<int>{input_dim, embed_dim}}}, init_root_block);
    AddOp("gaussian_random", {}, {{"Out", {"w2"}}},
          {{"dims", std::vector<int>{embed_dim, input_dim}}}, init_root_block);
    AddOp("fetch", {{"Input", {"w1"}}}, {},
          {{"dims", std::vector<int>{input_dim, embed_dim}}}, init_root_block);
    AddOp("fetch", {{"Input", {"w2"}}}, {},
          {{"dims", std::vector<int>{embed_dim, input_dim}}}, init_root_block);

    // run pdesc
Q
qijun 已提交
276 277 278 279
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

Y
Yang Yang 已提交
280
    add_gaussian_random_op("a", {batch_size, input_dim}, root_block);
Q
qijun 已提交
281

Y
Yang Yang 已提交
282 283
    add_mul_op("a", "w1", "b", root_block);
    add_mul_op("b", "w2", "a_out", root_block);
Q
qijun 已提交
284

Y
Yang Yang 已提交
285
    add_fetch_op("a_out", {input_dim, batch_size}, 0, root_block);
Q
qijun 已提交
286
  }
Y
Yang Yang 已提交
287

Q
qijun 已提交
288 289
 protected:
  ProgramDesc pdesc_;
Y
Yang Yang 已提交
290
  ProgramDesc init_pdesc_;
Q
qijun 已提交
291 292
};

Y
Yang Yang 已提交
293
class ExecutorTesterFeedAndFetch : public ::testing::Test {
Q
qijun 已提交
294 295 296 297 298 299
 public:
  virtual void SetUp() override {
    auto root_block = pdesc_.add_blocks();
    root_block->set_idx(0);
    root_block->set_parent_idx(-1);

300 301 302 303
    std::vector<int> dim{6};

    add_feed_op("a", dim, 0, root_block);
    add_feed_op("b", dim, 1, root_block);
Y
Yang Yang 已提交
304
    add_fetch_op("a", dim, 0, root_block);
Y
Yang Yang 已提交
305
    add_fetch_op("b", dim, 1, root_block);
Q
qijun 已提交
306

307 308
    std::vector<float> vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    std::vector<float> vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
Q
qijun 已提交
309 310 311 312 313 314 315 316 317
    inputs_.push_back(vec1);
    inputs_.push_back(vec2);
  }

 protected:
  ProgramDesc pdesc_;
  std::vector<std::vector<float>> inputs_;
};

Q
qijun 已提交
318
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
319
TEST_F(ExecutorTesterRandom, CPU) {
Q
qijun 已提交
320
  std::vector<Place> places;
321 322 323 324 325 326 327 328
  CPUPlace cpu_place;
  places.push_back(cpu_place);

  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);
Q
qijun 已提交
329

Y
Yang Yang 已提交
330
  Executor* executor = new Executor(places);
Y
Yang Yang 已提交
331
  executor->Run(init_pdesc_, GetGlobalScope());
332
  executor->Run(pdesc_, GetGlobalScope());
333
  std::vector<std::vector<float>> result = get_fetch_variable<float>();
Y
Yang Yang 已提交
334

335 336 337 338 339 340
  for (auto& vec : result) {
    for (auto& num : vec) {
      std::cout << num << " ";
    }
    std::cout << std::endl;
  }
Q
qijun 已提交
341 342 343
  delete executor;
}

Y
Yang Yang 已提交
344
TEST_F(ExecutorTesterFeedAndFetch, CPU) {
Q
qijun 已提交
345 346 347 348
  std::vector<Place> places;
  CPUPlace cpu_place;
  places.push_back(cpu_place);

349 350 351 352 353 354
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  paddle::memory::Used(cpu_place);

Q
qijun 已提交
355 356 357 358 359
  Executor* executor = new Executor(places);

  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    set_feed_variable<float>(inputs_);
360
    executor->Run(pdesc_, GetGlobalScope());
Q
qijun 已提交
361
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
Y
Yang Yang 已提交
362 363 364 365 366
    PADDLE_ENFORCE_EQ(result.size(), inputs_.size());
    for (size_t i = 0; i < result.size(); ++i) {
      PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size());
      for (size_t j = 0; j < result[i].size(); ++j) {
        PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]);
Q
qijun 已提交
367 368
      }
    }
Q
qijun 已提交
369 370
  }

Q
qijun 已提交
371 372
  delete executor;
}
Q
qijun 已提交
373
#else
Q
qijun 已提交
374 375 376 377 378
TEST_F(ExecutorTesterRandom, GPU) {
  std::vector<Place> places;
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);

Q
qijun 已提交
379 380 381 382 383 384 385
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
386 387
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
388
  Executor* executor = new Executor(places);
Y
Yang Yang 已提交
389 390 391 392

  LOG(INFO) << "Run Init";
  executor->Run(init_pdesc_, GetGlobalScope());
  LOG(INFO) << "Run";
393
  executor->Run(pdesc_, GetGlobalScope());
Y
Yang Yang 已提交
394 395 396 397 398 399 400 401
  std::vector<std::vector<float>> result = get_fetch_variable<float>();

  for (auto& vec : result) {
    for (auto& num : vec) {
      std::cout << num << " ";
    }
    std::cout << std::endl;
  }
Q
qijun 已提交
402 403 404
  delete executor;
}

Y
Yang Yang 已提交
405
TEST_F(ExecutorTesterFeedAndFetch, GPU) {
Q
qijun 已提交
406
  std::vector<Place> places;
Q
qijun 已提交
407 408
  GPUPlace gpu_place(0);
  places.push_back(gpu_place);
Q
qijun 已提交
409 410 411 412 413 414 415
  // We have a global Scope and BuddyAllocator, and we must ensure
  // global BuddyAllocator is initialized before global Scope. Thus,
  // global Scope will deconstruct before BuddyAllocator. Otherwise,
  // "pointer being freed was not allocated" error will appear.
  // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator
  // need to be used at first.
  paddle::memory::Used(CPUPlace());
416 417
  paddle::memory::Used(gpu_place);

Q
qijun 已提交
418
  Executor* executor = new Executor(places);
Q
qijun 已提交
419

Q
qijun 已提交
420 421 422
  // 3 mini-batch
  for (int i = 0; i < 3; i++) {
    set_feed_variable<float>(inputs_);
423
    executor->Run(pdesc_, GetGlobalScope());
Q
qijun 已提交
424
    std::vector<std::vector<float>> result = get_fetch_variable<float>();
Y
Yang Yang 已提交
425 426 427 428 429
    PADDLE_ENFORCE_EQ(result.size(), inputs_.size());
    for (size_t i = 0; i < result.size(); ++i) {
      PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size());
      for (size_t j = 0; j < result[i].size(); ++j) {
        PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]);
Q
qijun 已提交
430 431 432
      }
    }
  }
Q
qijun 已提交
433
  delete executor;
Y
Yang Yang 已提交
434
}
Q
qijun 已提交
435
#endif