reshard.py 63.9 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from functools import reduce

import paddle
import paddle.fluid.core as core
from paddle.utils import unique_name
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Program, OpProtoHolder
23
from paddle.distributed.fleet.meta_optimizers.common import OpRole
C
caozhou 已提交
24 25
import paddle.fluid.layers.utils as utils
from ..collective import _get_global_env
26 27 28
from .dist_context import DistributedContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
from .process_group import new_process_group, ProcessGroup, _g_process_group_map
C
caozhou 已提交
29

30 31
# NOTE: If op in _g_special_ops, it will not be resharded. 
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
32 33 34 35 36 37 38 39 40 41 42 43 44


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
        parent_block = program.blocks[block.parent_idx]
        if var_name in parent_block.vars:
            var = parent_block.vars[var_name]
    assert var is not None
    return var
45

C
caozhou 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
    """

    def __init__(self, group):
        self._group = group
        self._desc = "all_gather"

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, group: {self._group}."


class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
        dst (int): The destination process to receive.
    """

    def __init__(self, partition_index, dst):
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}."


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
    """

    def __init__(self, partition_index, src):
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index: {self._partition_index}, src: {self._src}."


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
        starts (list): It represents starting indices of corresponding axis in ``axes``.
        ends (list):  It represents ending indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to .
    """

    def __init__(self, starts, ends, axes):
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
172
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


191 192
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    @staticmethod
    def insert_send_op(block, idx, tensor, dst, op_role):
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
        block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            attrs={
                'ring_id': 0,
                'peer': dst,
                'use_calc_stream': True,
                'op_role': op_role
            })

    @staticmethod
    def insert_recv_op(block, idx, tensor, src, op_role):
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
        block._insert_op(
            idx,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [tensor]},
            attrs={
                'ring_id': 0,
                'peer': src,
                'out_shape': tensor.shape,
                'dtype': tensor.dtype,
                'use_calc_stream': True,
                'op_role': op_role
            })

    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
        helper = LayerHelper('concat', **locals())
        with paddle.static.program_guard(block.program):
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype())
        block._insert_op(
            idx,
            type='concat',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs)
        return out
C
caozhou 已提交
245

246 247 248 249 250 251 252 253 254 255 256
    @staticmethod
    def insert_slice_op(block, idx, tensor, starts, ends, axes, new_var_name,
                        op_role):
        """Insert slice op into block at the given block."""
        inputs = {'Input': tensor}
        infer_flags = list(1 for i in range(len(axes)))
        attrs = {
            "axes": axes,
            "starts": starts,
            "ends": ends,
            "infer_flags": infer_flags,
257
            'op_role': op_role
258 259 260 261 262 263 264 265 266 267 268
        }
        helper = LayerHelper('slice', **locals())
        out = block.create_var(
            name=new_var_name, dtype=tensor.dtype, type=tensor.type)
        block._insert_op(
            idx,
            type="slice",
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs)
        return out
C
caozhou 已提交
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    @staticmethod
    def insert_split_op(block, idx, tensor, num_or_sections, op_role):
        """Insert split op into block at the given index."""
        helper = LayerHelper('split', **locals())
        input_shape = tensor.shape
        inputs = {'X': tensor}
        attrs = {'num': num_or_sections, 'axis': 0, 'op_role': op_role}
        with paddle.static.program_guard(block.program):
            outs = [
                helper.create_variable_for_type_inference(
                    dtype=helper.input_dtype()) for i in range(num_or_sections)
            ]
        block._insert_op(
            idx,
            type="split",
            inputs=inputs,
            outputs={'Out': outs},
            attrs=attrs)
        return outs
C
caozhou 已提交
289

290 291
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
292 293 294 295 296 297 298 299 300
        """Insert fill constant op into block at the given index."""
        helper = LayerHelper("fill_constant", **locals())
        with paddle.static.program_guard(block.program):
            out = helper.create_variable_for_type_inference(dtype="int32")
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
301
        attrs['op_role'] = op_role
C
caozhou 已提交
302 303 304 305 306 307 308 309 310 311 312
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant')
        block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs)
        out.stop_gradient = True
        return out

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
            fill_constant_out = Inserter.insert_fill_constant_op(block, idx,
                                                                 op_role)
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
            block._insert_op(
                idx + 1,
                type="c_allreduce_sum",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={
                    'ring_id': 0,
                    'use_calc_stream': True,
                    'op_role': op_role
                })

            # insert c_sync_calc_stream op
            block._insert_op(
                idx + 2,
                type="c_sync_calc_stream",
                inputs={'X': [fill_constant_out]},
                outputs={'Out': [fill_constant_out]},
                attrs={'op_role': op_role})
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
        helper = LayerHelper(op_type, **locals())
        with paddle.static.program_guard(block.program):
            allgather_out = helper.create_variable_for_type_inference(
                dtype=tensor.dtype)
C
caozhou 已提交
354
        block._insert_op(
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            idx + idx_offset,
            type=op_type,
            inputs={'X': [tensor]},
            outputs={'Out': [allgather_out]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'nranks': group.nranks,
                'op_role': op_role
            })
        idx_offset += 1

        # insert split op
        split_out = Inserter.insert_split_op(
            block, idx + idx_offset, allgather_out, group.nranks, op_role)
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

    @staticmethod
    def concat_partitions_with_op(partition_tensor_list, tensor,
                                  partition_index, block, idx, op_role):
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
379
            partition_tensor_list.append((tensor, partition_index))
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
                concat_axis, first_order, new_partition = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index)
                if concat_axis != -1:
                    has_concat = True
                    _ = Inserter.insert_concat_op(block, idx[0], [partition_tensor_list[i][0], tensor], concat_axis, op_role) \
                        if first_order == 0 else \
                        Inserter.insert_concat_op(block, idx[0], [tensor, partition_tensor_list[i][0]], concat_axis, op_role)
                    partition_tensor_list.pop(i)
                    idx[0] += 1
                    Inserter.concat_partitions_with_op(partition_tensor_list, _,
                                                       new_partition, block,
                                                       idx, op_role)
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
            "create_py_reader", "create_double_buffer_reader", "read"
        ]
C
caozhou 已提交
411

412 413 414 415
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
                                var_name, block, auto_parallel_main_prog).shape)
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
439

440 441 442 443 444 445 446 447 448 449 450 451 452
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
                        process_mesh = dist_context.get_tensor_dist_attr_for_program(
                            get_var_with_recursion(
                                var_name, block,
                                auto_parallel_main_prog)).process_mesh
                        if rank_id in process_mesh.processes:
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
453

454 455 456 457
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
                    if rank_id not in op_process_mesh.processes and op.type not in not_remove_op_ref:
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
    def remove_no_need_vars(auto_parallel_main_prog, dist_params_grads):
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
                        if "Param" in op.input_names and "Grad" in op.input_names:
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
                            vars[param_name], vars[param_grad_map[param_name]])
                    idx += 1

            for var in remove_vars:
                block._remove_var(var)

    @staticmethod
    def remove_no_need_in_main(auto_parallel_main_prog, dist_context, rank_id,
                               dist_params_grads):
        """Remove no need vars and ops in the main program."""
        Remover.remove_no_need_ops(auto_parallel_main_prog, dist_context,
                                   rank_id)
        Resharder.change_while_op_input_and_output(auto_parallel_main_prog,
                                                   dist_context)
        Remover.remove_no_need_vars(auto_parallel_main_prog, dist_params_grads)

    @staticmethod
    def remove_no_need_in_startup(auto_parallel_main_prog,
                                  auto_parallel_startup_prog):
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
537

538 539 540 541 542 543 544 545 546
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
547

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
568

569 570 571 572 573 574
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
575 576

        remove_op_idx = []
577 578 579
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
580
            if op.type == "c_sync_comm_stream":
581
                var_names = []
582
                for var_name in op.input_arg_names:
583 584 585
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
586
                    remove_op_idx.append(idx)
587 588 589 590
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
591
                continue
C
caozhou 已提交
592

593 594 595 596 597 598
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
599
        for idx in remove_op_idx[::-1]:
600
            startup_block._remove_op(idx)
C
caozhou 已提交
601 602


603 604 605
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
    while_block_info = {}

    def __init__(self,
                 auto_parallel_main_prog,
                 auto_parallel_startup_prog,
                 rank_id,
                 dist_context,
                 dist_params_grads,
                 batch_size=None):
        assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_main_prog should be Program, " \
                                            "but got {}.".format(type(auto_parallel_main_prog))
        assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_startup_prog should be Program, " \
                                            "but got {}.".format(type(auto_parallel_startup_prog))
        assert isinstance(rank_id, int), "The type of rank_id should be int, " \
                                            "but got {}.".format(type(rank_id))
        assert isinstance(dist_context, DistributedContext), "The type of dist_context should be DistributedContext, " \
                                            "but got {}.".format(type(dist_context))
        if batch_size is not None:
            assert isinstance(batch_size, int), "The type of batch_size should be int, " \
                                                "but got {}.".format(type(batch_size))

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
645

646 647 648
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
649

650 651 652
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
653

654 655 656
    @property
    def rank_id(self):
        return self._rank_id
657

658 659 660
    @property
    def dist_context(self):
        return self._dist_context
661

662 663 664
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
665

666 667 668
    @property
    def batch_size(self):
        return self._batch_size
669

670 671 672
    @property
    def has_sent(self):
        return self._has_sent
673

674 675 676
    @property
    def has_recv(self):
        return self._has_recv
677

678 679 680 681 682 683 684 685 686 687 688 689 690
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
691

692
        return partition_shape
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
            relative_process = relative_process - relative_process // product * product
            process_index.append(idx)

        return process_index

    @staticmethod
    def compute_partition_index(process, complete_shape, dims_mapping,
                                process_shape, process_group):
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
            complete_shape, dims_mapping, process_shape)
        process_index = Resharder.compute_process_index(process, process_group,
                                                        process_shape)
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
                partition_index.append([
                    process_index[dims_mapping[i]] * partition_shape[i],
                    (process_index[dims_mapping[i]] + 1) * partition_shape[i]
                ])

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
                if item[1] == partition_index_y[idx][0] and item[
                        0] < partition_index_y[idx][1]:
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
                elif item[0] == partition_index_y[idx][1] and item[
                        1] > partition_index_y[idx][0]:
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
                    partition_index_list[i], partition_index)
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
                    Resharder.concat_partitions(partition_index_list,
                                                new_partition)
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
                "op_id"]
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
                if dist_op:
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

            assert while_op is not None

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
                    if output_name.find(var_name) != -1:
                        new_Out.append(output_name)
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
                shape_x[0] <= shape_y[0] < shape_x[1]):
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
Z
zhaoyingli 已提交
852 853 854 855 856
        global _g_special_ops
        if op.type in _g_special_ops:
            return True
        return False

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
    def is_condition_replicative(self, op):
        assert op.type == "while"
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_dist_attr = dist_op.dist_attr

        # the dims mapping of condition tensor should be replicative
        for var_name in op.input("Condition"):
            var = get_var_with_recursion(var_name, sub_block,
                                         self.auto_parallel_main_prog)
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        return True

    def need_reshard(self,
                     dist_tensor,
                     dist_op,
                     actual_process_mesh,
                     op_input=True):
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_name = dist_tensor.serial_tensor.name
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
        op_dist_attr = dist_op.dist_attr
        op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(tensor_name)
        op_process_mesh = actual_process_mesh
        if op_input:
            op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(
                tensor_name)
            if all(
                    map(lambda x: x is not None, [
                        tensor_dims_mapping, tensor_process_mesh,
                        op_input_dims_mapping, op_process_mesh
                    ])):
                # dims_mapping
                if tensor_dims_mapping != op_input_dims_mapping:
                    if dist_op.serial_op.type == "while":
                        sub_block = self.auto_parallel_main_prog.blocks[
                            dist_op.serial_op.attr("sub_block").id]
                        for op in sub_block.ops:
                            for var_name in op.input_arg_names:
                                if var_name == tensor_name:
                                    dist_op_attr = self.dist_context.get_dist_op_for_program(
                                        op).dist_attr
                                    var_dims_mapping = dist_op_attr.get_input_dims_mapping(
                                        var_name)
                                    if var_dims_mapping != tensor_dims_mapping:
                                        is_reshard = True
                                        break
                    else:
                        is_reshard = True
                # process_mesh
                if tensor_process_mesh != op_process_mesh:
                    # when processes length is not the same, the dims mapping must be replicative now
                    if len(tensor_process_mesh.processes) != len(
                            op_process_mesh.processes):
                        assert self.is_unshard(tensor_dims_mapping)
                        assert self.is_unshard(op_input_dims_mapping)
                    else:
                        if dist_tensor.serial_tensor.dtype == paddle.bool:
                            raise ValueError(
                                "Bool var is not supported reshard.")

                        # for while op, it should find the process mesh of op actually used the tensor as input
                        if dist_op.serial_op.type == "while":
                            sub_block = self.auto_parallel_main_prog.blocks[
                                dist_op.serial_op.attr("sub_block").id]
                            for op in sub_block.ops:
                                for var_name in op.input_arg_names:
                                    if var_name == tensor_name:
                                        dist_op_attr = self.dist_context.get_dist_op_for_program(
                                            op).dist_attr
                                        process_mesh = dist_op_attr.process_mesh
                                        if process_mesh == op_process_mesh:
                                            is_reshard = True
                                            break
                        else:
                            is_reshard = True
        else:
            op_output_dims_mapping = op_dist_attr.get_output_dims_mapping(
                tensor_name)
            if all(
                    map(lambda x: x is not None, [
                        tensor_dims_mapping, tensor_process_mesh,
                        op_output_dims_mapping, op_process_mesh
                    ])):
                if tensor_process_mesh != op_process_mesh:
                    if dist_tensor.serial_tensor.dtype == paddle.bool:
                        raise ValueError("Bool var is not supported reshard.")
                    is_reshard = True
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )

        return is_reshard

    def get_process_meshes(self, op):
        """Get all process meshes when op has sub block."""
        assert op.has_attr("sub_block")
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        op_process_mesh = self.dist_context.get_dist_op_for_program(
            op).dist_attr.process_mesh
        process_meshes = []
        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            process_mesh = dist_op.dist_attr.process_mesh
            if process_mesh not in process_meshes and process_mesh != op_process_mesh:
                process_meshes.append(process_mesh)

        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

    def get_op_process_meshes(self, op):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
            if set(process_mesh.processes) & (
                    set(op_process_mesh.processes)
            ) and len(process_mesh.processes) <= len(op_process_mesh.processes):
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

    def get_while_op_actual_process_mesh(self, op):
        """Get the while op actual Process mesh corresponding to rank"""
        assert op.type == "while"
        while_op_process_mesh = self.dist_context.get_dist_op_for_program(
            op).dist_attr.process_mesh
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        actual_process_mesh = None
        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            process_mesh = dist_op.dist_attr.process_mesh
            if process_mesh == while_op_process_mesh:
1012
                continue
1013 1014 1015
            if self.rank_id in process_mesh.processes:
                raw_process_mesh = process_mesh
                break
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        if actual_process_mesh is None and self.rank_id in while_op_process_mesh.processes:
            actual_process_mesh = while_op_process_mesh

        assert actual_process_mesh is not None
        return actual_process_mesh

    def find_op_desc_seq(self, dist_tensor, dist_op, actual_process_mesh):
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
            dist_op (DistributedOperator): A distributed operator.
            actual_process_mesh (ProcessMesh): The actual op process mesh.

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
        source_process_group = source_process_mesh.processes
        source_process_shape = source_process_mesh.topology

        op_dist_attr = dist_op.dist_attr
        target_process_mesh = actual_process_mesh
        target_dims_mapping = op_dist_attr.get_input_dims_mapping(tensor_name)
        target_process_group = target_process_mesh.processes
        target_process_shape = target_process_mesh.topology

        if source_tensor.shape[0] < 0:
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

        complete_shape = Resharder.compute_complete_shape(
            source_tensor.shape, source_process_shape, source_dims_mapping)
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
        if set(target_process_group).intersection(set(
                source_process_group)) and set(target_process_group).difference(
                    set(source_process_group)):
            pass

        # in the different process group, it will use send, recv, concat and slice op
        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(source_process, complete_shape, source_dims_mapping, \
                                                                source_process_shape, source_process_group)
                if not partition_process_mapping_list:
                    partition_process_mapping_list.append(
                        [source_partition_index, [source_process], [False]])
1074
                else:
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
                    partition_list = list(
                        [item[0] for item in partition_process_mapping_list])
                    process_list = list(
                        [item[1] for item in partition_process_mapping_list])
                    has_used = list(
                        [item[2] for item in partition_process_mapping_list])
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
                        partition_process_mapping_list.append([
                            source_partition_index, [source_process], [False]
                        ])

            for target_process in target_process_group:
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
                    target_process, complete_shape, target_dims_mapping,
                    target_process_shape, target_process_group)
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
                        source_process, complete_shape, source_dims_mapping,
                        source_process_shape, source_process_group)
                    to_send_process = None
                    if all(_ for _ in list(map(self.is_overlapped, source_partition_index, target_partition_index))) \
                            and source_partition_index not in has_sent:
                        idx = list([
                            item[0] for item in partition_process_mapping_list
                        ]).index(source_partition_index)
                        has_used = list([
                            item[2] for item in partition_process_mapping_list
                        ])[idx]
                        process_list = list([
                            item[1] for item in partition_process_mapping_list
                        ])[idx]
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
                        assert to_send_process is not None, "Failed to find the send process."

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
                        send_op_desc = SendOpDesc(source_partition_index,
                                                  target_process)
                        recv_op_desc = RecvOpDesc(source_partition_index,
                                                  to_send_process)
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
                        Resharder.concat_partitions(partition_index_list,
                                                    source_partition_index)

                # append concat op desc
                op_desc_seq[target_process].append(
                    ConcatOpDesc(all_partition_index_list))

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
                for idx, item in enumerate(concatenated_partition_index):
                    slice_starts.append(target_partition_index[idx][0] - item[
                        0])
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
                op_desc_seq[target_process].append(
                    SliceOpDesc(slice_starts, slice_ends, slices_axes))

        # in the same process group, it will use allgahther and slice op
        else:
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
                    source_process, complete_shape, source_dims_mapping,
                    source_process_shape, source_process_group)
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
                    process_index.append(
                        [[source_process, ], source_partition_index])
                else:
                    process_index[partition_index_list.index(
                        source_partition_index)][0].append(source_process)

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
                        process, complete_shape, target_dims_mapping,
                        target_process_shape, target_process_group)
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

                    slice_op_desc = SliceOpDesc(
                        starts=slice_starts, ends=slice_ends, axes=slices_axes)
                    op_desc_seq[process] = [AllGatherOpDesc(group=group),
                                            ConcatOpDesc(partition_index_list=all_partition_index_list), slice_op_desc] \
                        if len(group) > 1 else [slice_op_desc]

        return op_desc_seq

    def parse_op_desc(self, block, op_desc_seq, var_name, reshard_op,
                      actual_process_mesh):
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
        assert idx is not None, "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id)

        matched_op = block.ops[idx]
        source_tensor = get_var_with_recursion(var_name, block,
                                               self.auto_parallel_main_prog)
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
                if not self.has_allgather[
                        var_name] or op_desc.group not in list(
                            map(lambda x: x[0], self.has_allgather[var_name])):
                    tensor_list, idx_offset = Inserter.insert_allgather_op(
                        block, idx, source_tensor, op_desc.group,
                        reshard_op.attr('op_role'))
                    idx += idx_offset
                    tensor_name_list = [var.name for var in tensor_list]
                    self.has_allgather[var_name].append(
                        [op_desc.group, tensor_name_list])
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1242 1243 1244
                                get_var_with_recursion(
                                    var_name, block,
                                    self.auto_parallel_main_prog)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                                for var_name in item[1]
                            ]
                            break
                assert tensor_list, "The result of parsing allgather op should not be None."

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
                    Inserter.insert_send_op(block, idx, source_tensor,
                                            op_desc.dst,
                                            reshard_op.attr('op_role'))
                    idx += 1
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
                    recv_tensor = block.create_var(
                        name=unique_name.generate(var_name + "@recv"),
                        shape=shape,
                        dtype=source_tensor.dtype,
                        type=source_tensor.type)
                    Inserter.insert_recv_op(block, idx, recv_tensor,
                                            op_desc.src,
                                            reshard_op.attr('op_role'))
                    tensor_list.append(recv_tensor)
                    idx += 1
                    self.has_recv[var_name][op_desc.src] = recv_tensor
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list, tensor,
                        partition_index_list[index], block, idx_list,
                        reshard_op.attr('op_role'))
                idx = idx_list[0]

            elif isinstance(op_desc, SliceOpDesc):
                assert len(
                    partition_tensor_list) == 1 or not partition_tensor_list
                to_slice_tensor = partition_tensor_list[0][0] if len(
                    partition_tensor_list) == 1 else source_tensor
                new_name = unique_name.generate(var_name + "@RESHARD")
                target_tensor = Inserter.insert_slice_op(
                    block,
                    idx,
                    to_slice_tensor,
                    starts=op_desc.starts,
                    ends=op_desc.ends,
                    axes=op_desc.axes,
                    new_var_name=new_name,
                    op_role=reshard_op.attr('op_role'))

                tensor_attr = TensorDistributedAttribute()
                process_mesh = actual_process_mesh
                dims_mapping = self.dist_context.get_op_dist_attr_for_program(
                    matched_op).get_input_dims_mapping(var_name)
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
                    target_tensor, tensor_attr)

1317
                if op.type == "while":
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
                    # var_reshard_mapping means the while op input need be changed to 
                    if "var_reshard_mapping" not in Resharder.while_block_info[
                            op.attr("sub_block").id].keys():
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"] = {}
                    Resharder.while_block_info[op.attr("sub_block").id][
                        "var_reshard_mapping"][var_name] = target_tensor.name

                # rename op input name according to new name
                for op in block.ops:
                    for name in op.input_arg_names:
                        op_dist_attr = self.dist_context.get_op_dist_attr_for_program(
                            op)
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
                                op.desc._rename_input(name, target_tensor.name)
                                op_dist_attr.set_input_dims_mapping(
                                    target_tensor.name, dims_mapping)
                                op_dist_attr.set_input_dist_attr(name, None)
                                continue

                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
                            op_process_mesh = op_dist_attr.process_mesh
                            op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(
                                var_name)
                            if op_process_mesh == process_mesh and op_input_dims_mapping == dims_mapping:
                                op.desc._rename_input(name, target_tensor.name)
                                op_dist_attr.set_input_dims_mapping(
                                    target_tensor.name, dims_mapping)
                                op_dist_attr.set_input_dist_attr(name, None)

    def reshard(self):
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            if block_idx in Resharder.while_block_info:
                if "var_reshard_mapping" in Resharder.while_block_info[
                        block_idx]:
                    var_reshard_mapping = Resharder.while_block_info[block_idx][
                        "var_reshard_mapping"]
                    for op in block.ops:
                        for var_name in op.input_arg_names:
                            if var_name in var_reshard_mapping:
                                op.desc._rename_input(
                                    var_name, var_reshard_mapping[var_name])
                                dist_op = self.dist_context.get_dist_op_for_program(
                                    op)
                                op_dist_attr = dist_op.dist_attr
                                if op_dist_attr.process_mesh == Resharder.while_block_info[
                                        block_idx]["actual_process_mesh"]:
                                    dims_mapping = op_dist_attr.get_input_dims_mapping(
                                        var_name)
                                    op_dist_attr.set_input_dims_mapping(
                                        var_reshard_mapping[var_name],
                                        dims_mapping)
                                    op_dist_attr.set_input_dist_attr(var_name,
                                                                     None)

                        # the outputs also need to be renamed when the output name is the same with input name
                        for var_name in op.output_arg_names:
                            if var_name in var_reshard_mapping:
                                op.desc._rename_output(
                                    var_name, var_reshard_mapping[var_name])
                                dist_op = self.dist_context.get_dist_op_for_program(
                                    op)
                                op_dist_attr = dist_op.dist_attr
                                if op_dist_attr.process_mesh == Resharder.while_block_info[
                                        block_idx]["actual_process_mesh"]:
                                    dims_mapping = op_dist_attr.get_output_dims_mapping(
                                        var_name)
                                    op_dist_attr.set_output_dims_mapping(
                                        var_reshard_mapping[var_name],
                                        dims_mapping)
                                    op_dist_attr.set_output_dist_attr(var_name,
                                                                      None)

            idx = 0
            while idx < len(block.ops):
                pre_op_count = len(block.ops)
                op = block.ops[idx]

                if self.is_special_op(op):
                    idx += 1
                    continue

                dist_op = self.dist_context.get_dist_op_for_program(op)
                if dist_op is not None:
                    process_meshes = []
                    if op.type == "while":
                        if not self.is_condition_replicative(op):
                            raise ValueError(
                                "Please check the condition due to the dims mapping is not replicative."
                            )
                        process_meshes = self.get_process_meshes(op)
                        assert process_meshes
                        if op.attr("sub_block"
                                   ).id not in Resharder.while_block_info:
                            Resharder.while_block_info[op.attr("sub_block")
                                                       .id] = {}
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "op_id"] = op.desc.id()
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "actual_process_mesh"] = self.get_while_op_actual_process_mesh(
                                op)
                    else:
                        process_meshes = self.get_op_process_meshes(op)
                    input_vars = None
                    if op.type == "while":
                        input_var_names = op.input("X")
                    else:
                        input_var_names = op.input_arg_names
                    idx_offset = 0
                    for var_name in op.input_arg_names:
                        # skip lod_tensor_blocking_queue_0
                        if var_name == "lod_tensor_blocking_queue_0":
                            continue
                        var = get_var_with_recursion(
                            var_name, block, self.auto_parallel_main_prog)
                        dist_tensor = self.dist_context.get_dist_tensor_for_program(
                            var)
                        for process_mesh in process_meshes:
                            if dist_tensor is not None and self.need_reshard(
                                    dist_tensor, dist_op, process_mesh):
                                reshard_op_desc = self.find_op_desc_seq(
                                    dist_tensor, dist_op, process_mesh)
                                self.parse_op_desc(block, reshard_op_desc,
                                                   var_name, op, process_mesh)
                                cur_op_count = len(block.ops)
                                idx_offset = idx_offset + cur_op_count - pre_op_count
                                pre_op_count = cur_op_count
                    idx = idx + idx_offset + 1
1447
                else:
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
                    idx += 1

            # insert send and recv op if output process mesh is different from tensor process mesh
            idx = 0
            # skip reader and ops whose process mesh is union
            skip_ops = [
                "create_py_reader", "create_double_buffer_reader", "read",
                "while", "write_to_array", "read_from_array"
            ]
            global _g_special_ops
            skip_ops += _g_special_ops
            while idx < len(block.ops):
                pre_op_count = len(block.ops)
                op = block.ops[idx]
                dist_op = self.dist_context.get_dist_op_for_program(op)
                if dist_op is not None and op.type not in skip_ops:
                    for var_name in op.output_arg_names:
                        var = get_var_with_recursion(
                            var_name, block, self.auto_parallel_main_prog)
                        dist_tensor = self.dist_context.get_dist_tensor_for_program(
                            var)
                        process_mesh = dist_op.dist_attr.process_mesh
                        if dist_tensor is not None and self.need_reshard(
                                dist_tensor, dist_op, process_mesh, False):
                            for index, item in enumerate(
                                    dist_op.dist_attr.process_mesh.processes):
                                recv_rank = dist_tensor.dist_attr.process_mesh.processes[
                                    index]
                                if self.rank_id == item:
                                    Inserter.insert_send_op(block, idx + 1, var,
                                                            recv_rank,
                                                            op.attr('op_role'))
                                if self.rank_id == recv_rank:
                                    Inserter.insert_recv_op(block, idx + 1, var,
                                                            item,
                                                            op.attr('op_role'))
1484 1485 1486
                            cur_op_count = len(block.ops)
                            idx_offset = idx_offset + cur_op_count - pre_op_count
                            pre_op_count = cur_op_count
1487 1488 1489 1490 1491 1492 1493 1494
                    idx = idx + idx_offset + 1
                else:
                    idx += 1

        # remove no need vars and ops in the main program
        Remover.remove_no_need_in_main(self.auto_parallel_main_prog,
                                       self.dist_context, self.rank_id,
                                       self.dist_params_grads)
1495

1496 1497 1498
        # remove no need vars and ops in the startip program
        Remover.remove_no_need_in_startup(self.auto_parallel_main_prog,
                                          self.auto_parallel_startup_prog)
C
caozhou 已提交
1499

1500 1501
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}