reshard.py 56.3 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from functools import reduce

import paddle
import paddle.fluid.core as core
from paddle.utils import unique_name
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Program, OpProtoHolder
23
from paddle.distributed.fleet.meta_optimizers.common import OpRole
C
caozhou 已提交
24 25
import paddle.fluid.layers.utils as utils
from ..collective import _get_global_env
26 27 28
from .dist_context import DistributedContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
from .process_group import new_process_group, ProcessGroup, _g_process_group_map
C
caozhou 已提交
29

30 31
# NOTE: If op in _g_special_ops, it will not be resharded. 
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
32
while_block_info = {}
33

C
caozhou 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
    """

    def __init__(self, group):
        self._group = group
        self._desc = "all_gather"

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, group: {self._group}."


class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
        dst (int): The destination process to receive.
    """

    def __init__(self, partition_index, dst):
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}."


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
    """

    def __init__(self, partition_index, src):
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index: {self._partition_index}, src: {self._src}."


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
        starts (list): It represents starting indices of corresponding axis in ``axes``.
        ends (list):  It represents ending indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to .
    """

    def __init__(self, starts, ends, axes):
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
        partition_index_list (list): A list contains all partition index.
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


def _compute_partition_shape(complete_shape, dims_mapping, process_shape):
    """Compute the shape of partition."""
    partition_shape = []
    for idx, item in enumerate(complete_shape):
        if dims_mapping[idx] == -1:
            partition_shape.append(item)
        else:
            partition_shape.append(item // process_shape[dims_mapping[idx]])

    return partition_shape


def _compute_process_index(process, process_group, process_shape):
    """Compute the index of process_shape corresponding to the process."""
    relative_process = process_group.index(process)
    process_index = []
    product = reduce(lambda x, y: x * y, process_shape)

    for i in range(len(process_shape)):
        idx = relative_process // (product // process_shape[i])
        product = product // process_shape[i]
        relative_process = relative_process - relative_process // product * product
        process_index.append(idx)

    return process_index


def _compute_partition_index(process, complete_shape, dims_mapping,
                             process_shape, process_group):
    """Compute the partition index in complete tensor."""
    partition_shape = _compute_partition_shape(complete_shape, dims_mapping,
                                               process_shape)
    process_index = _compute_process_index(process, process_group,
                                           process_shape)
    partition_index = []

    for i in range(len(complete_shape)):
        if dims_mapping[i] == -1:
            partition_index.append([0, partition_shape[i]])
        else:
            partition_index.append([
                process_index[dims_mapping[i]] * partition_shape[i],
                (process_index[dims_mapping[i]] + 1) * partition_shape[i]
            ])

    return partition_index


def _compute_concat_info(partition_index_x, partition_index_y):
    """Judge whether two partition can be concatenated and compute concatenated partition index."""
    differ_count = 0
    concat_axis = -1
    first_order = 0
    new_partition = []

    for idx, item in enumerate(partition_index_x):
        if item != partition_index_y[idx]:
            differ_count += 1
            if item[1] == partition_index_y[idx][0] and item[
                    0] < partition_index_y[idx][1]:
                concat_axis = idx
                new_partition.append([item[0], partition_index_y[idx][1]])
            elif item[0] == partition_index_y[idx][1] and item[
                    1] > partition_index_y[idx][0]:
                first_order = 1
                concat_axis = idx
                new_partition.append([partition_index_y[idx][0], item[1]])
        else:
            new_partition.append(item)

    if differ_count == 1:
        return concat_axis, first_order, new_partition
    else:
        return -1, first_order, new_partition


def _concat_partitions(partition_index_list, partition_index):
    """Concat the given partitions without inserting concat op."""
    if not partition_index_list:
        partition_index_list.append(partition_index)
    else:
        i = 0
        has_concat = False
        while i < len(partition_index_list):
            concat_axis, _, new_partition = _compute_concat_info(
                partition_index_list[i], partition_index)
            if concat_axis != -1:
                has_concat = True
                partition_index_list.pop(i)
                _concat_partitions(partition_index_list, new_partition)
                break
            i += 1
        if not has_concat:
            partition_index_list.append(partition_index)


def _is_overlapped(shape_x, shape_y):
    """Judge whether two partitions intersect on the specified dimension."""
    overlapped = False
    if (shape_y[0] <= shape_x[0] < shape_y[1]) or (
            shape_x[0] <= shape_y[0] < shape_x[1]):
        overlapped = True
    return overlapped


284 285 286 287 288 289
def _need_reshard(dist_tensor,
                  dist_op,
                  actual_process_mesh,
                  program,
                  dist_context,
                  op_input=True):
C
caozhou 已提交
290
    """Judge the tensor whether needs to be resharded."""
291 292 293 294 295 296 297

    def _is_unshard(dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

C
caozhou 已提交
298
    is_reshard = False
299 300 301 302 303 304
    tensor_dist_attr = dist_tensor.dist_attr
    tensor_name = dist_tensor.serial_tensor.name
    tensor_dims_mapping = tensor_dist_attr.dims_mapping
    tensor_process_mesh = tensor_dist_attr.process_mesh
    op_dist_attr = dist_op.dist_attr
    op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(tensor_name)
305
    op_process_mesh = actual_process_mesh
306 307 308 309 310 311 312
    if op_input:
        op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(tensor_name)
        if all(
                map(lambda x: x is not None, [
                    tensor_dims_mapping, tensor_process_mesh,
                    op_input_dims_mapping, op_process_mesh
                ])):
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            # dims_mapping
            if tensor_dims_mapping != op_input_dims_mapping:
                if dist_op.serial_op.type == "while":
                    sub_block = program.blocks[dist_op.serial_op.attr(
                        "sub_block").id]
                    for op in sub_block.ops:
                        for var_name in op.input_arg_names:
                            if var_name == tensor_name:
                                dist_op_attr = dist_context.get_dist_op_for_program(
                                    op).dist_attr
                                var_dims_mapping = dist_op_attr.get_input_dims_mapping(
                                    var_name)
                                if var_dims_mapping != tensor_dims_mapping:
                                    is_reshard = True
                                    break
                else:
                    is_reshard = True
            # process_mesh
            if tensor_process_mesh != op_process_mesh:
                # when processes length is not the same, the dims mapping must be replicative now
                if len(tensor_process_mesh.processes) != len(
                        op_process_mesh.processes):
                    assert _is_unshard(tensor_dims_mapping)
                    assert _is_unshard(op_input_dims_mapping)
                else:
                    if dist_tensor.serial_tensor.dtype == paddle.bool:
                        raise ValueError("Bool var is not supported reshard.")

                    # for while op, it should find the process mesh of op actually used the tensor as input
                    if dist_op.serial_op.type == "while":
                        sub_block = program.blocks[dist_op.serial_op.attr(
                            "sub_block").id]
                        for op in sub_block.ops:
                            for var_name in op.input_arg_names:
                                if var_name == tensor_name:
                                    dist_op_attr = dist_context.get_dist_op_for_program(
                                        op).dist_attr
                                    process_mesh = dist_op_attr.process_mesh
                                    if process_mesh == op_process_mesh:
                                        is_reshard = True
                                        break
                    else:
                        is_reshard = True
356 357 358 359 360 361 362 363 364
    else:
        op_output_dims_mapping = op_dist_attr.get_output_dims_mapping(
            tensor_name)
        if all(
                map(lambda x: x is not None, [
                    tensor_dims_mapping, tensor_process_mesh,
                    op_output_dims_mapping, op_process_mesh
                ])):
            if tensor_process_mesh != op_process_mesh:
365 366
                if dist_tensor.serial_tensor.dtype == paddle.bool:
                    raise ValueError("Bool var is not supported reshard.")
367 368 369 370 371
                is_reshard = True
            if tensor_dims_mapping != op_output_dims_mapping:
                raise ValueError(
                    "It is not supported that tensor dims mapping is different from op output dims mapping."
                )
372

C
caozhou 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386
    return is_reshard


def _compute_complete_shape(slice_shape, process_shape, dims_mapping):
    """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
    complete_shape = []
    for idx, item in enumerate(slice_shape):
        if dims_mapping[idx] == -1:
            complete_shape.append(item)
        else:
            complete_shape.append(item * process_shape[dims_mapping[idx]])
    return complete_shape


387
def find_op_desc_seq(dist_tensor, dist_op, actual_process_mesh, batch_size):
C
caozhou 已提交
388 389 390 391
    """
    Find the op description sequence to reshard the source tensor for matching the op requirement.

    Args:
392 393
        dist_tensor (DistributedTensor): A distributed tensor.
        dist_op (DistributedOperator): A distributed operator.
394
        actual_process_mesh (ProcessMesh): The actual op process mesh.
C
caozhou 已提交
395 396 397 398 399

    Returns:
        Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
        process and value is a list containing op description.
    """
400 401 402 403 404 405
    tensor_dist_attr = dist_tensor.dist_attr
    source_tensor = dist_tensor.serial_tensor
    tensor_name = source_tensor.name
    source_dims_mapping = tensor_dist_attr.dims_mapping
    source_process_mesh = tensor_dist_attr.process_mesh
    source_process_group = source_process_mesh.processes
C
caozhou 已提交
406 407
    source_process_shape = source_process_mesh.topology

408
    op_dist_attr = dist_op.dist_attr
409
    target_process_mesh = actual_process_mesh
410 411
    target_dims_mapping = op_dist_attr.get_input_dims_mapping(tensor_name)
    target_process_group = target_process_mesh.processes
C
caozhou 已提交
412 413
    target_process_shape = target_process_mesh.topology

414 415 416 417 418
    if source_tensor.shape[0] < 0:
        new_shape = list(source_tensor.shape)
        new_shape[0] = batch_size
        source_tensor.desc.set_shape(new_shape)

C
caozhou 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    complete_shape = _compute_complete_shape(
        source_tensor.shape, source_process_shape, source_dims_mapping)
    op_desc_seq = {}

    # TODO: if the target process group has the same process with source process group
    if set(target_process_group).intersection(set(
            source_process_group)) and set(target_process_group).difference(
                set(source_process_group)):
        pass

    # in the different process group, it will use send, recv, concat and slice op
    elif target_process_group != source_process_group:
        partition_process_mapping_list = []
        for source_process in source_process_group:
            source_partition_index = _compute_partition_index(source_process, complete_shape, source_dims_mapping, \
                                                              source_process_shape, source_process_group)
            if not partition_process_mapping_list:
                partition_process_mapping_list.append(
                    [source_partition_index, [source_process], [False]])
            else:
                partition_list = list(
                    [item[0] for item in partition_process_mapping_list])
                process_list = list(
                    [item[1] for item in partition_process_mapping_list])
                has_used = list(
                    [item[2] for item in partition_process_mapping_list])
                if partition_list.count(source_partition_index) == 1:
                    index = partition_list.index(source_partition_index)
                    process_list[index].append(source_process)
                    has_used[index].append(False)
                else:
                    partition_process_mapping_list.append(
                        [source_partition_index, [source_process], [False]])

        for target_process in target_process_group:
            has_sent = []
            target_partition_index = _compute_partition_index(
                target_process, complete_shape, target_dims_mapping,
                target_process_shape, target_process_group)
            partition_index_list = []
            all_partition_index_list = []
            for source_process in source_process_group:
                source_partition_index = _compute_partition_index(
                    source_process, complete_shape, source_dims_mapping,
                    source_process_shape, source_process_group)
                to_send_process = None
                if all(_ for _ in list(map(_is_overlapped, source_partition_index, target_partition_index))) \
                        and source_partition_index not in has_sent:
                    idx = list([
                        item[0] for item in partition_process_mapping_list
                    ]).index(source_partition_index)
                    has_used = list(
                        [item[2]
                         for item in partition_process_mapping_list])[idx]
                    process_list = list(
                        [item[1]
                         for item in partition_process_mapping_list])[idx]
                    i = 0
                    while i < len(has_used):
                        if not has_used[i]:
                            to_send_process = process_list[i]
                            has_used[i] = True
                            break
                        i += 1
                    if i == len(has_used):
                        has_used = list(map(lambda x: False, has_used))
                        to_send_process = process_list[0]
                        has_used[0] = True
                    assert to_send_process is not None, "Failed to find the send process."

                    if to_send_process not in op_desc_seq.keys():
                        op_desc_seq[to_send_process] = []
                    if target_process not in op_desc_seq.keys():
                        op_desc_seq[target_process] = []
                    all_partition_index_list.append(source_partition_index)

                    # append send and recv op desc
                    send_op_desc = SendOpDesc(source_partition_index,
                                              target_process)
                    recv_op_desc = RecvOpDesc(source_partition_index,
                                              to_send_process)
                    op_desc_seq[to_send_process].append(send_op_desc)
                    op_desc_seq[target_process].append(recv_op_desc)
                    has_sent.append(source_partition_index)
                    _concat_partitions(partition_index_list,
                                       source_partition_index)

            # append concat op desc
            op_desc_seq[target_process].append(
                ConcatOpDesc(all_partition_index_list))

            # append slice op desc
            slice_starts = []
            slice_ends = []
            slices_axes = []
            concatenated_partition_index = partition_index_list[0]
            for idx, item in enumerate(concatenated_partition_index):
                slice_starts.append(target_partition_index[idx][0] - item[0])
                slice_ends.append(target_partition_index[idx][1] - item[0])
                slices_axes.append(idx)
            op_desc_seq[target_process].append(
                SliceOpDesc(slice_starts, slice_ends, slices_axes))

    # in the same process group, it will use allgahther and slice op
    else:
        partition_index_list = []
        all_partition_index_list = []
        process_index = []
        for source_process in source_process_group:
            source_partition_index = _compute_partition_index(
                source_process, complete_shape, source_dims_mapping,
                source_process_shape, source_process_group)
            if source_partition_index not in partition_index_list:
                partition_index_list.append(source_partition_index)
                process_index.append(
                    [[source_process, ], source_partition_index])
            else:
                process_index[partition_index_list.index(
                    source_partition_index)][0].append(source_process)

        for i in range(len(process_index[0][0])):
            group = []
            for j in range(len(process_index)):
                group.append(process_index[j][0][i])
                if i == 0:
                    all_partition_index_list.append(process_index[j][1])
            for process in group:
                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                target_partition_index = _compute_partition_index(
                    process, complete_shape, target_dims_mapping,
                    target_process_shape, target_process_group)
                for idx, item in enumerate(target_partition_index):
                    slice_starts.append(item[0])
                    slice_ends.append(item[1])
                    slices_axes.append(idx)

                slice_op_desc = SliceOpDesc(
                    starts=slice_starts, ends=slice_ends, axes=slices_axes)
                op_desc_seq[process] = [AllGatherOpDesc(group=group),
                                        ConcatOpDesc(partition_index_list=all_partition_index_list), slice_op_desc] \
                    if len(group) > 1 else [slice_op_desc]

    return op_desc_seq


567
def _insert_send_op(block, idx, tensor, dst, op_role):
C
caozhou 已提交
568 569 570 571 572 573 574 575 576 577
    """Insert send op into block at the given index."""
    op_type = 'send_v2'
    block._insert_op(
        idx,
        type=op_type,
        inputs={'X': [tensor]},
        attrs={
            'ring_id': 0,
            'peer': dst,
            'use_calc_stream': True,
578
            'op_role': op_role
C
caozhou 已提交
579 580 581
        })


582
def _insert_recv_op(block, idx, tensor, src, op_role):
C
caozhou 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595
    """Insert recv op into block at the given index."""
    op_type = 'recv_v2'
    block._insert_op(
        idx,
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': 0,
            'peer': src,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': True,
596
            'op_role': op_role
C
caozhou 已提交
597 598 599
        })


600
def _insert_concat_op(block, idx, tensors, axis, op_role):
C
caozhou 已提交
601 602 603 604
    """Insert concat op into block at the given block."""
    inputs = {'X': tensors}
    attrs = {}
    attrs['axis'] = axis
605
    attrs['op_role'] = op_role
C
caozhou 已提交
606 607 608 609 610 611 612 613 614
    helper = LayerHelper('concat', **locals())
    with paddle.static.program_guard(block.program):
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
    block._insert_op(
        idx, type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
    return out


615 616
def _insert_slice_op(block, idx, tensor, starts, ends, axes, new_var_name,
                     op_role):
C
caozhou 已提交
617 618 619 620 621 622 623
    """Insert slice op into block at the given block."""
    inputs = {'Input': tensor}
    infer_flags = list(1 for i in range(len(axes)))
    attrs = {
        "axes": axes,
        "starts": starts,
        "ends": ends,
624 625
        "infer_flags": infer_flags,
        'op_role': op_role
C
caozhou 已提交
626 627 628
    }
    helper = LayerHelper('slice', **locals())
    out = block.create_var(
629
        name=new_var_name, dtype=tensor.dtype, type=tensor.type)
C
caozhou 已提交
630 631 632 633 634
    block._insert_op(
        idx, type="slice", inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
    return out


635
def _insert_split_op(block, idx, tensor, num_or_sections, op_role):
C
caozhou 已提交
636 637 638 639
    """Insert split op into block at the given index."""
    helper = LayerHelper('split', **locals())
    input_shape = tensor.shape
    inputs = {'X': tensor}
640
    attrs = {'num': num_or_sections, 'axis': 0, 'op_role': op_role}
C
caozhou 已提交
641 642 643 644 645 646 647 648 649 650
    with paddle.static.program_guard(block.program):
        outs = [
            helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()) for i in range(num_or_sections)
        ]
    block._insert_op(
        idx, type="split", inputs=inputs, outputs={'Out': outs}, attrs=attrs)
    return outs


651
def _insert_allgather_op(block, idx, tensor, ranks, op_role):
C
caozhou 已提交
652 653 654 655 656 657 658 659 660 661 662 663
    """Insert allgather op into block at the given index."""

    def _insert_fill_constant_op(block, idx):
        """Insert fill constant op into block at the given index."""
        helper = LayerHelper("fill_constant", **locals())
        with paddle.static.program_guard(block.program):
            out = helper.create_variable_for_type_inference(dtype="int32")
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
664
        attrs['op_role'] = op_role
C
caozhou 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=[0], op_type='fill_constant')
        block._insert_op(
            idx,
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs)
        out.stop_gradient = True
        return out

    tensor_list = []
    group = new_process_group(ranks)
    idx_offset = 0

    # instant process group before insert allgather op.
    if not group.is_instantiate():
        # insert fill_constant op
        fill_constant_out = _insert_fill_constant_op(block, idx)
        fill_constant_out.stop_gradient = True

        # insert c_allreduce_sum op
        block._insert_op(
            idx + 1,
            type="c_allreduce_sum",
            inputs={'X': [fill_constant_out]},
            outputs={'Out': [fill_constant_out]},
            attrs={'ring_id': 0,
693 694
                   'use_calc_stream': True,
                   'op_role': op_role})
C
caozhou 已提交
695 696 697 698 699 700

        # insert c_sync_calc_stream op
        block._insert_op(
            idx + 2,
            type="c_sync_calc_stream",
            inputs={'X': [fill_constant_out]},
701 702
            outputs={'Out': [fill_constant_out]},
            attrs={'op_role': op_role})
C
caozhou 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        idx_offset = 3

    # insert c_allgather op
    op_type = 'c_allgather'
    helper = LayerHelper(op_type, **locals())
    with paddle.static.program_guard(block.program):
        allgather_out = helper.create_variable_for_type_inference(
            dtype=tensor.dtype)
    block._insert_op(
        idx + idx_offset,
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [allgather_out]},
        attrs={
            'ring_id': group.id,
            'use_calc_stream': True,
719 720
            'nranks': group.nranks,
            'op_role': op_role
C
caozhou 已提交
721 722 723 724 725
        })
    idx_offset += 1

    # insert split op
    split_out = _insert_split_op(block, idx + idx_offset, allgather_out,
726
                                 group.nranks, op_role)
C
caozhou 已提交
727 728 729 730 731 732
    idx_offset += 1
    tensor_list.extend(split_out)
    return tensor_list, idx_offset


def _concat_partitions_with_op(partition_tensor_list, tensor, partition_index,
733
                               block, idx, op_role):
C
caozhou 已提交
734 735 736 737 738 739 740 741 742 743 744
    """Concat the tensors and insert concat op."""
    if not partition_tensor_list:
        partition_tensor_list.append((tensor, partition_index))
    else:
        i = 0
        has_concat = False
        while i < len(partition_tensor_list):
            concat_axis, first_order, new_partition = _compute_concat_info(
                partition_tensor_list[i][1], partition_index)
            if concat_axis != -1:
                has_concat = True
745
                _ = _insert_concat_op(block, idx[0], [partition_tensor_list[i][0], tensor], concat_axis, op_role) \
C
caozhou 已提交
746
                    if first_order == 0 else \
747
                    _insert_concat_op(block, idx[0], [tensor, partition_tensor_list[i][0]], concat_axis, op_role)
C
caozhou 已提交
748 749 750
                partition_tensor_list.pop(i)
                idx[0] += 1
                _concat_partitions_with_op(partition_tensor_list, _,
751
                                           new_partition, block, idx, op_role)
C
caozhou 已提交
752 753 754 755 756 757 758 759 760 761 762
                break
            i += 1
        if not has_concat:
            partition_tensor_list.append((tensor, partition_index))


HAS_SENT = {}
HAS_RECV = {}
HAS_ALLGATHER = {}


763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
def _get_while_op_actual_process_mesh(op, program, rank_id, dist_context):
    """Get the while op actual Process mesh corresponding to rank"""
    assert op.type == "while"
    while_op_process_mesh = dist_context.get_dist_op_for_program(
        op).dist_attr.process_mesh
    sub_block = program.blocks[op.attr("sub_block").id]
    ops = sub_block.ops
    actual_process_mesh = None
    for op in ops:
        dist_op = dist_context.get_dist_op_for_program(op)
        if not dist_op:
            continue
        process_mesh = dist_op.dist_attr.process_mesh
        if process_mesh == while_op_process_mesh:
            continue
        if rank_id in process_mesh.processes:
            raw_process_mesh = process_mesh
            break

    if actual_process_mesh is None and rank_id in while_op_process_mesh.processes:
        actual_process_mesh = while_op_process_mesh

    assert actual_process_mesh is not None
    return actual_process_mesh


def _get_var(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
        parent_block = program.blocks[block.parent_idx]
        if var_name in parent_block.vars:
            var = parent_block.vars[var_name]
    assert var is not None
    return var


def parse_op_desc(block, rank_id, op_desc_seq, var_name, reshard_op,
                  dist_context, program, actual_process_mesh):
C
caozhou 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    """Parse op desc sequence and insert op in the block"""
    global HAS_SENT
    global HAS_RECV
    global HAS_ALLGATHER
    tensor_list = []
    partition_tensor_list = []
    if rank_id not in op_desc_seq.keys():
        return
    op_desc_list = op_desc_seq[rank_id]

    idx = None
    for index, op in list(enumerate(block.ops)):
        if op.desc.id == reshard_op.desc.id:
            idx = index
            break
    assert idx is not None, "The op for reshard cannot be found in the rank {} program.".format(
        rank_id)

    matched_op = block.ops[idx]
823
    source_tensor = _get_var(var_name, block, program)
C
caozhou 已提交
824 825 826 827 828 829 830
    for op_desc in op_desc_list:
        if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
            if var_name not in HAS_ALLGATHER.keys():
                HAS_ALLGATHER[var_name] = []
            if not HAS_ALLGATHER[var_name] or op_desc.group not in list(
                    map(lambda x: x[0], HAS_ALLGATHER[var_name])):
                tensor_list, idx_offset = _insert_allgather_op(
831 832
                    block, idx, source_tensor, op_desc.group,
                    reshard_op.attr('op_role'))
C
caozhou 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
                idx += idx_offset
                tensor_name_list = [var.name for var in tensor_list]
                HAS_ALLGATHER[var_name].append(
                    [op_desc.group, tensor_name_list])
            else:
                for item in HAS_ALLGATHER[var_name]:
                    if op_desc.group == item[0]:
                        tensor_list = [
                            program.global_block().vars[var_name]
                            for var_name in item[1]
                        ]
                        break
            assert tensor_list, "The result of parsing allgather op should not be None."

        elif isinstance(op_desc, SendOpDesc):
            if var_name not in HAS_SENT.keys():
                HAS_SENT[var_name] = []
            if op_desc.dst not in HAS_SENT[var_name]:
851 852
                _insert_send_op(block, idx, source_tensor, op_desc.dst,
                                reshard_op.attr('op_role'))
C
caozhou 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866
                idx += 1
                HAS_SENT[var_name].append(op_desc.dst)

        elif isinstance(op_desc, RecvOpDesc):
            if var_name not in HAS_RECV.keys():
                HAS_RECV[var_name] = {}
            if op_desc.src not in HAS_RECV[var_name].keys():
                partition_index = op_desc.partition_index
                shape = []
                for index in partition_index:
                    shape.append(index[1] - index[0])
                recv_tensor = block.create_var(
                    name=unique_name.generate(var_name + "@recv"),
                    shape=shape,
867 868 869 870
                    dtype=source_tensor.dtype,
                    type=source_tensor.type)
                _insert_recv_op(block, idx, recv_tensor, op_desc.src,
                                reshard_op.attr('op_role'))
C
caozhou 已提交
871 872 873 874 875 876 877 878 879 880 881 882
                tensor_list.append(recv_tensor)
                idx += 1
                HAS_RECV[var_name][op_desc.src] = recv_tensor
            else:
                tensor_list.append(HAS_RECV[var_name][op_desc.src])

        elif isinstance(op_desc, ConcatOpDesc):
            partition_index_list = op_desc.partition_index_list
            idx_list = [idx]
            for index, tensor in enumerate(tensor_list):
                _concat_partitions_with_op(partition_tensor_list, tensor,
                                           partition_index_list[index], block,
883
                                           idx_list, reshard_op.attr('op_role'))
C
caozhou 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897
            idx = idx_list[0]

        elif isinstance(op_desc, SliceOpDesc):
            assert len(partition_tensor_list) == 1 or not partition_tensor_list
            to_slice_tensor = partition_tensor_list[0][0] if len(
                partition_tensor_list) == 1 else source_tensor
            new_name = unique_name.generate(var_name + "@RESHARD")
            target_tensor = _insert_slice_op(
                block,
                idx,
                to_slice_tensor,
                starts=op_desc.starts,
                ends=op_desc.ends,
                axes=op_desc.axes,
898 899
                new_var_name=new_name,
                op_role=reshard_op.attr('op_role'))
C
caozhou 已提交
900

901
            tensor_attr = TensorDistributedAttribute()
902
            process_mesh = actual_process_mesh
903
            dims_mapping = dist_context.get_op_dist_attr_for_program(
C
caozhou 已提交
904
                matched_op).get_input_dims_mapping(var_name)
905 906 907 908
            tensor_attr.dims_mapping = dims_mapping
            tensor_attr.process_mesh = process_mesh
            dist_context.set_tensor_dist_attr_for_program(target_tensor,
                                                          tensor_attr)
C
caozhou 已提交
909

910 911 912 913 914 915 916 917 918 919
            if op.type == "while":
                global while_block_info
                # var_reshard_mapping means the while op input need be changed to 
                if "var_reshard_mapping" not in while_block_info[op.attr(
                        "sub_block").id].keys():
                    while_block_info[op.attr("sub_block").id][
                        "var_reshard_mapping"] = {}
                while_block_info[op.attr("sub_block").id][
                    "var_reshard_mapping"][var_name] = target_tensor.name

C
caozhou 已提交
920 921 922
            # rename op input name according to new name
            for op in block.ops:
                for name in op.input_arg_names:
923
                    op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
C
caozhou 已提交
924
                    if name == var_name and op_dist_attr is not None:
925 926 927 928 929 930 931 932
                        if op.desc.id() == matched_op.desc.id():
                            op.desc._rename_input(name, target_tensor.name)
                            op_dist_attr.set_input_dims_mapping(
                                target_tensor.name, dims_mapping)
                            op_dist_attr.set_input_dist_attr(name, None)
                            continue

                        # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
933
                        op_process_mesh = op_dist_attr.process_mesh
C
caozhou 已提交
934 935
                        op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(
                            var_name)
936
                        if op_process_mesh == process_mesh and op_input_dims_mapping == dims_mapping:
C
caozhou 已提交
937 938 939
                            op.desc._rename_input(name, target_tensor.name)
                            op_dist_attr.set_input_dims_mapping(
                                target_tensor.name, dims_mapping)
940
                            op_dist_attr.set_input_dist_attr(name, None)
C
caozhou 已提交
941 942 943 944 945 946 947


def _remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
    """Remove no need ops in the main program"""
    not_remove_op_ref = [
        "create_py_reader", "create_double_buffer_reader", "read"
    ]
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
    global while_block_info

    # NOTE: The nested sub block is not be supported now.
    remove_block_order = []
    for block_idx in while_block_info:
        remove_block_order.append(block_idx)

    for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
        if block_idx not in remove_block_order:
            remove_block_order.append(block_idx)

    # the sub block should be removed first
    for block_idx in remove_block_order:
        remove_op_idx = []
        block = auto_parallel_main_prog.blocks[block_idx]
        ops = block.ops
        vars = block.vars
        for idx, op in enumerate(ops):
            if op.type == "read":
                dim_list = []
                for var_name in op.output_arg_names:
                    dim_list.extend(
                        _get_var(var_name, block, auto_parallel_main_prog)
                        .shape)
                for i in range(idx, -1, -1):
                    if ops[i].type == "create_py_reader":
                        ops[i]._set_attr("shape_concat", dim_list)
                        break
C
caozhou 已提交
976 977
                continue

978 979 980 981 982 983 984 985 986 987 988 989
            # replace the input and output of c_sync_comm_stream op when in pipeline scene.
            if op.type == "c_sync_comm_stream":
                need_save = []
                for var_name in op.input_arg_names:
                    process_mesh = dist_context.get_tensor_dist_attr_for_program(
                        _get_var(var_name, block,
                                 auto_parallel_main_prog)).process_mesh
                    if rank_id in process_mesh.processes:
                        need_save.append(var_name)
                if not need_save:
                    remove_op_idx.append(idx)
                    continue
C
caozhou 已提交
990

991 992 993 994
                proto = OpProtoHolder.instance().get_op_proto(op.type)
                op.desc.set_input(proto.inputs[0].name, need_save)
                op.desc.set_output(proto.outputs[0].name, need_save)
                continue
C
caozhou 已提交
995

996 997 998 999 1000 1001 1002 1003 1004
            # judge the other op whether should be removed.
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
            if op_dist_attr is not None:
                op_process_mesh = op_dist_attr.process_mesh
                if rank_id not in op_process_mesh.processes and op.type not in not_remove_op_ref:
                    remove_op_idx.append(idx)

        for idx in remove_op_idx[::-1]:
            block._remove_op(idx)
C
caozhou 已提交
1005 1006


1007
def _remove_no_need_vars(auto_parallel_main_prog, dist_params_grads):
C
caozhou 已提交
1008
    """Remove no need vars in the main program"""
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
        remove_vars = set()
        ops = block.ops
        vars = block.vars
        need_vars = set()
        for op in ops:
            for var_name in op.input_arg_names:
                if var_name in vars:
                    need_vars.add(var_name)
            for var_name in op.output_arg_names:
                if var_name in vars:
                    need_vars.add(var_name)
        for var in vars:
            if var not in need_vars:
                remove_vars.add(var)

        # change dist_params_grads, the optimize op just in block 0.
        if block_idx == 0:
            param_grad_map = {}
            for op in ops:
                if int(op.attr('op_role')) == int(OpRole.Optimize):
                    if "Param" in op.input_names and "Grad" in op.input_names:
                        param_name = op.input("Param")[0]
                        grad_name = op.input("Grad")[0]
                        param_grad_map[param_name] = grad_name

            need_remove_idx = []
            for idx, item in enumerate(dist_params_grads):
                if item[0].name not in param_grad_map.keys():
                    need_remove_idx.append(idx)

            for idx in need_remove_idx[::-1]:
                dist_params_grads.pop(idx)

            idx = 0
            while idx < len(dist_params_grads):
                param_name = dist_params_grads[idx][0].name
                grad_name = dist_params_grads[idx][1].name
                if grad_name != param_grad_map[param_name]:
                    dist_params_grads[idx] = (vars[param_name],
                                              vars[param_grad_map[param_name]])
                idx += 1
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
        for var in remove_vars:
            block._remove_var(var)


def _change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
    """Change while op input and output after the corresponding sub block ops removed"""
    global while_block_info
    for sub_block_idx in while_block_info:
        sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
        parent_while_op_id = while_block_info[sub_block_idx]["op_id"]
        parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

        sub_block_op_inputs = set()
        sub_block_op_outputs = []
        for op in sub_block.ops:
            # skip the input and output of operators inserted in the reshard phase
            dist_op = dist_context.get_dist_op_for_program(op)
            if dist_op:
                for var_name in op.output_arg_names:
                    if var_name not in sub_block_op_outputs:
                        sub_block_op_outputs.append(var_name)
                for var_name in op.input_arg_names:
                    sub_block_op_inputs.add(var_name)

        # find the while op
        while_op = None
        for op in parent_block.ops:
            if op.desc.id() == parent_while_op_id and op.type == "while":
                while_op = op
                break

        assert while_op is not None

        # find the actual input and output of while op
        proto = OpProtoHolder.instance().get_op_proto(while_op.type)
        new_X = []
        for var_name in while_op.input("X"):
            if var_name in sub_block_op_inputs:
                new_X.append(var_name)
        assert new_X
        while_op.desc.set_input(proto.inputs[0].name, new_X)

        new_Out = []
        for var_name in while_op.output("Out"):
            for output_name in sub_block_op_outputs[::-1]:
                if output_name.find(var_name) != -1:
                    new_Out.append(output_name)
        assert new_Out
        while_op.desc.set_output(proto.outputs[0].name, new_Out)
C
caozhou 已提交
1101 1102


1103 1104
def remove_no_need_in_main(auto_parallel_main_prog, dist_context, rank_id,
                           dist_params_grads):
C
caozhou 已提交
1105 1106
    """Remove no need vars and ops in the main program."""
    _remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id)
1107
    _change_while_op_input_and_output(auto_parallel_main_prog, dist_context)
1108
    _remove_no_need_vars(auto_parallel_main_prog, dist_params_grads)
C
caozhou 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184


def remove_no_need_in_startup(auto_parallel_main_prog,
                              auto_parallel_startup_prog):
    """Remove no need vars and ops in the startup program."""
    main_input_vars = set()
    main_ops = auto_parallel_main_prog.global_block().ops
    for op in main_ops:
        for var_name in op.input_arg_names:
            main_input_vars.add(var_name)

    startup_block = auto_parallel_startup_prog.global_block()
    startup_output_vars = set()
    startup_ops = startup_block.ops
    for op in startup_ops:
        # skip c_sync_comm_stream op
        if op.type == "c_sync_comm_stream":
            continue
        for var_name in op.output_arg_names:
            startup_output_vars.add(var_name)

    need_vars = set()
    for var_name in startup_output_vars:
        if var_name in main_input_vars:
            need_vars.add(var_name)

    startup_ops = startup_block.ops
    actual_need_vars = set()
    for idx, op in enumerate(startup_ops):
        is_need_op = False
        if op.type == "c_sync_comm_stream":
            continue
        for var_name in op.output_arg_names:
            if var_name in need_vars:
                is_need_op = True
                break
        if is_need_op:
            for var_name in op.output_arg_names:
                actual_need_vars.add(var_name)
            for var_name in op.input_arg_names:
                actual_need_vars.add(var_name)

    remove_vars = set()
    for var_name in startup_block.vars:
        if var_name not in actual_need_vars:
            remove_vars.add(var_name)
    for var in remove_vars:
        startup_block._remove_var(var)

    remove_op_idx = []
    vars = startup_block.vars
    for idx, op in enumerate(startup_block.ops):
        is_no_need_op = False
        if op.type == "c_sync_comm_stream":
            var_names = []
            for var_name in op.input_arg_names:
                if var_name in vars:
                    var_names.append(var_name)
            if not var_names:
                remove_op_idx.append(idx)
            else:
                proto = OpProtoHolder.instance().get_op_proto(op.type)
                op.desc.set_input(proto.inputs[0].name, var_names)
                op.desc.set_output(proto.outputs[0].name, var_names)
            continue

        for var_name in op.output_arg_names:
            if var_name not in vars:
                is_no_need_op = True
                break
        if is_no_need_op:
            remove_op_idx.append(idx)
    for idx in remove_op_idx[::-1]:
        startup_block._remove_op(idx)


1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
def _get_process_meshes(op, program, dist_context):
    """Get all process meshes when op has sub block."""
    assert op.has_attr("sub_block")
    sub_block = program.blocks[op.attr("sub_block").id]
    ops = sub_block.ops
    op_process_mesh = dist_context.get_dist_op_for_program(
        op).dist_attr.process_mesh
    process_meshes = []
    for op in ops:
        dist_op = dist_context.get_dist_op_for_program(op)
        if not dist_op:
            continue
        process_mesh = dist_op.dist_attr.process_mesh
        if process_mesh not in process_meshes and process_mesh != op_process_mesh:
            process_meshes.append(process_mesh)

    if not process_meshes:
        process_meshes.append(op_process_mesh)

    return process_meshes


def _is_condition_replicative(op, program, dist_context):
    assert op.type == "while"
    sub_block = program.blocks[op.attr("sub_block").id]
    dist_op = dist_context.get_dist_op_for_program(op)
    op_dist_attr = dist_op.dist_attr

    # the dims mapping of condition tensor should be replicative
    for var_name in op.input("Condition"):
        var = _get_var(var_name, sub_block, program)
        dist_tensor = dist_context.get_dist_tensor_for_program(var)
        tensor_dist_attr = dist_tensor.dist_attr
        var_dims_mapping = tensor_dist_attr.dims_mapping
        for dim in var_dims_mapping:
            if dim != -1:
                return False

    return True


def _get_op_process_meshes(op, dist_context):
    process_meshes = []
    dist_op = dist_context.get_dist_op_for_program(op)
    op_process_mesh = dist_op.dist_attr.process_mesh
    for process_mesh in dist_context.process_meshes:
        if set(process_mesh.processes) & (
                set(op_process_mesh.processes)
        ) and len(process_mesh.processes) <= len(op_process_mesh.processes):
            process_meshes.append(process_mesh)

    # it means the process mesh is not a union when process meshes is null
    if not process_meshes:
        process_meshes.append(op_process_mesh)

    return process_meshes


def reshard(auto_parallel_main_prog,
            auto_parallel_startup_prog,
            rank_id,
            dist_context,
            dist_params_grads,
            batch_size=None):
C
caozhou 已提交
1249
    """
1250
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
C
caozhou 已提交
1251 1252 1253 1254 1255

    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
1256
        dist_context (DistributedContext): The distributed context of this rank.
1257
        dist_params_grads (list): The list contains the tuple of param and grad.
C
caozhou 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    """
    assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_main_prog should be Program, " \
                                         "but got {}.".format(type(auto_parallel_main_prog))
    assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_startup_prog should be Program, " \
                                         "but got {}.".format(type(auto_parallel_startup_prog))
    assert isinstance(rank_id, int), "The type of rank_id should be int, " \
                                         "but got {}.".format(type(rank_id))
    assert isinstance(dist_context, DistributedContext), "The type of dist_context should be DistributedContext, " \
                                         "but got {}.".format(type(dist_context))

Z
zhaoyingli 已提交
1268 1269 1270 1271 1272 1273
    def _is_special_op(op):
        global _g_special_ops
        if op.type in _g_special_ops:
            return True
        return False

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    global while_block_info
    for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
        if block_idx in while_block_info:
            if "var_reshard_mapping" in while_block_info[block_idx]:
                var_reshard_mapping = while_block_info[block_idx][
                    "var_reshard_mapping"]
                for op in block.ops:
                    for var_name in op.input_arg_names:
                        if var_name in var_reshard_mapping:
                            op.desc._rename_input(var_name,
                                                  var_reshard_mapping[var_name])
                            dist_op = dist_context.get_dist_op_for_program(op)
                            op_dist_attr = dist_op.dist_attr
                            if op_dist_attr.process_mesh == while_block_info[
                                    block_idx]["actual_process_mesh"]:
                                dims_mapping = op_dist_attr.get_input_dims_mapping(
                                    var_name)
                                op_dist_attr.set_input_dims_mapping(
                                    var_reshard_mapping[var_name], dims_mapping)
                                op_dist_attr.set_input_dist_attr(var_name, None)

                    # the outputs also need to be renamed when the output name is the same with input name
                    for var_name in op.output_arg_names:
                        if var_name in var_reshard_mapping:
                            op.desc._rename_output(
                                var_name, var_reshard_mapping[var_name])
                            dist_op = dist_context.get_dist_op_for_program(op)
                            op_dist_attr = dist_op.dist_attr
                            if op_dist_attr.process_mesh == while_block_info[
                                    block_idx]["actual_process_mesh"]:
                                dims_mapping = op_dist_attr.get_output_dims_mapping(
                                    var_name)
                                op_dist_attr.set_output_dims_mapping(
                                    var_reshard_mapping[var_name], dims_mapping)
                                op_dist_attr.set_output_dist_attr(var_name,
                                                                  None)

        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if _is_special_op(op):
                idx += 1
                continue
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            dist_op = dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
                process_meshes = []
                if op.type == "while":
                    if not _is_condition_replicative(
                            op, auto_parallel_main_prog, dist_context):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
                    process_meshes = _get_process_meshes(
                        op, auto_parallel_main_prog, dist_context)
                    assert process_meshes
                    if op.attr("sub_block").id not in while_block_info:
                        while_block_info[op.attr("sub_block").id] = {}
                    while_block_info[op.attr("sub_block").id][
                        "op_id"] = op.desc.id()
                    while_block_info[op.attr("sub_block").id][
                        "actual_process_mesh"] = _get_while_op_actual_process_mesh(
                            op, auto_parallel_main_prog, rank_id, dist_context)
                else:
                    process_meshes = _get_op_process_meshes(op, dist_context)
                input_vars = None
                if op.type == "while":
                    input_var_names = op.input("X")
                else:
                    input_var_names = op.input_arg_names
                idx_offset = 0
                for var_name in op.input_arg_names:
                    # skip lod_tensor_blocking_queue_0
                    if var_name == "lod_tensor_blocking_queue_0":
                        continue
                    var = _get_var(var_name, block, auto_parallel_main_prog)
                    dist_tensor = dist_context.get_dist_tensor_for_program(var)
                    for process_mesh in process_meshes:
                        if dist_tensor is not None and _need_reshard(
                                dist_tensor, dist_op, process_mesh,
                                auto_parallel_main_prog, dist_context):
                            reshard_op_desc = find_op_desc_seq(
                                dist_tensor, dist_op, process_mesh, batch_size)
                            parse_op_desc(block, rank_id, reshard_op_desc,
                                          var_name, op, dist_context,
                                          auto_parallel_main_prog, process_mesh)
                            cur_op_count = len(block.ops)
                            idx_offset = idx_offset + cur_op_count - pre_op_count
                            pre_op_count = cur_op_count
                idx = idx + idx_offset + 1
            else:
                idx += 1
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
            "create_py_reader", "create_double_buffer_reader", "read", "while",
            "write_to_array", "read_from_array"
        ]
        skip_ops += _g_special_ops
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                for var_name in op.output_arg_names:
                    var = _get_var(var_name, block, auto_parallel_main_prog)
                    dist_tensor = dist_context.get_dist_tensor_for_program(var)
                    process_mesh = dist_op.dist_attr.process_mesh
                    if dist_tensor is not None and _need_reshard(
                            dist_tensor, dist_op, process_mesh,
                            auto_parallel_main_prog, dist_context, False):
                        for index, item in enumerate(
                                dist_op.dist_attr.process_mesh.processes):
                            recv_rank = dist_tensor.dist_attr.process_mesh.processes[
                                index]
                            if rank_id == item:
                                _insert_send_op(block, idx + 1, var, recv_rank,
                                                op.attr('op_role'))
                            if rank_id == recv_rank:
                                _insert_recv_op(block, idx + 1, var, item,
                                                op.attr('op_role'))
                        cur_op_count = len(block.ops)
                        idx_offset = idx_offset + cur_op_count - pre_op_count
                        pre_op_count = cur_op_count
                idx = idx + idx_offset + 1
            else:
                idx += 1
1405

C
caozhou 已提交
1406
    # remove no need vars and ops in the main program
1407 1408
    remove_no_need_in_main(auto_parallel_main_prog, dist_context, rank_id,
                           dist_params_grads)
C
caozhou 已提交
1409 1410 1411 1412

    # remove no need vars and ops in the startip program
    remove_no_need_in_startup(auto_parallel_main_prog,
                              auto_parallel_startup_prog)