op_function_generator.cc 24.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18
#include <fstream>
#include <iostream>
#include <string>
19 20 21
#ifndef _WIN32
#include <unistd.h>
#endif
22 23 24 25 26 27 28

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
29
#ifdef PADDLE_WITH_ASCEND_CL
30 31
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
32

L
Leo Chen 已提交
33 34 35 36 37 38 39 40
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
41 42
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
C
ceci3 已提交
43
    {"instance_norm", {"X", "Scale", "Bias"}},
44 45 46
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
47 48 49
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
    {"slice", {"Input", "StartsTensor", "EndsTensor"}},
L
Leo Chen 已提交
50 51
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
52
    {"nll_loss", {"X", "Label", "Weight"}},
53
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
54
    {"gather", {"X", "Index", "Axis"}},
55 56 57 58 59
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
60
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
61 62
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
63
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
64
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
65
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
66
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate"}},
67
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
68
    {"run_program", {"X", "Params"}},
69
};
L
Leo Chen 已提交
70 71 72 73 74 75 76 77 78 79 80 81

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
82 83 84
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
C
ceci3 已提交
85 86 87
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
Z
Zhang Ting 已提交
88
    {"unique", {"Out", "Index", "Indices", "Counts"}},
89 90
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
91
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
92 93
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
94 95
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
96
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
97
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
98
    {"momentum", {"ParamOut", "VelocityOut"}},
99
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
100 101
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
102
    {"run_program", {"DOut"}},
L
Leo Chen 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
117 118 119
    {"sgd", {"ParamOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
120 121 122
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
123 124
    {"momentum", {"ParamOut", "VelocityOut"}},
    {"batch_norm", {"MeanOut", "VarianceOut"}},
C
ceci3 已提交
125
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
126
    {"accuracy", {"Correct", "Total"}},
127
    {"fill_constant", {"Out"}},
L
lilong12 已提交
128
    {"recv_v2", {"Out"}},
129
    {"partial_recv", {"Out"}},
L
Leo Chen 已提交
130
    {"matmul", {"Out"}},
131
    {"c_broadcast", {"Out"}},
K
kuizhiqing 已提交
132 133
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
134 135 136 137 138 139 140
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
L
Leo Chen 已提交
141
    {"fake_quantize_dequantize_moving_average_abs_max",
142
     {"Out", "OutScale", "OutAccum", "OutState"}},
143
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
H
huangxu96 已提交
144
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
145 146 147
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
148 149
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
150 151
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
152
    {"rnn", {"DropoutState"}},
153
    {"run_program", {"Out", "DOut", "OutScope"}},
L
Leo Chen 已提交
154
};
155

156 157 158
// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
159 160 161
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
162 163 164 165 166 167 168
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};

169 170 171 172 173 174 175 176
// NOTE(pangyoki): Inplace OP with duplicable input.
// The set includes inplace ops that have duplicable input.
// The first Varbase in input needs to be specified for the inplace strategy
// and share Varbase with the output.
std::set<std::string> inplace_op_duplicable_ins_set = {
    "sum",
};

177
// clang-format off
178
const char* OUT_INITIALIZER_TEMPLATE =
179
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
180 181 182 183
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
184

185 186 187 188
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
189
)";
L
Leo Chen 已提交
190

191
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
L
Leo Chen 已提交
192
    if (%s.size() != 0) {
193 194
      ins["%s"] = %s;
    }
L
Leo Chen 已提交
195 196
)";

197 198
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
199 200
)";

201 202
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
203
)";
204 205 206 207
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

208 209 210 211 212 213 214
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
215
    auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)";
216 217

const char* CAST_VAR_LIST_TEMPLATE = R"(
218
    auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)";
219

220 221
const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";
222

223 224 225 226 227 228 229 230 231
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
232

233
const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
234 235 236 237
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
const char* INPLACE_DUPLICABLE_INPUT = R"([0])";

const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)";

const char* INPLACE_STRATEGY_TEMPLATE =
R"(
    PADDLE_ENFORCE_EQ(
      %s->IsLeaf() && !%s->OverridedStopGradient(), false,
      platform::errors::InvalidArgument("%s", %s->Name()));
    %s->BumpInplaceVersion();
    VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy.";
)";

const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})";

253
const char* OP_FUNCTION_TEMPLATE =
254
R"(
255
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
256
{
257 258
  PyThreadState *tstate = nullptr;
  try
259
  {
260 261 262 263
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
264
    %s
265 266 267
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
268
    imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s});
269 270
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
271
    %s
272
  }
273 274 275 276 277 278 279
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
280
})";
281

282
const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";
283

284
// clang-format on
L
Leo Chen 已提交
285 286
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
287 288 289
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
290 291 292 293 294 295 296 297
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
298
}
299

300 301 302 303
static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) {
  return inplace_op_duplicable_ins_set.count(op_type);
}

304 305 306 307
static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

308 309 310 311
static inline std::string TempName(const std::string& name) {
  return name + '_';
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string ins_initializer = "{";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  std::string inplace_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
341 342
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

    if (input.dispensable()) {
      const auto in_template = input.duplicable()
                                   ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                   : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
      ins_initializer_with_null +=
          paddle::string::Sprintf(in_template, in_name, in_name, in_name);
    } else {
      const auto in_template = input.duplicable()
                                   ? INPUT_LIST_INITIALIZER_TEMPLATE
                                   : INPUT_INITIALIZER_TEMPLATE;
      ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name);
      ins_initializer += ",";
    }
  }
  if (ins_initializer.back() == ',') {
    ins_initializer.pop_back();
  }
  ins_initializer += "}";

363
  if (!input_args.empty() && input_args.back() == ',') {
364 365 366 367 368 369 370 371 372 373 374 375
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string inplace_mapping_str = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
    const auto return_template =
        output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }
408 409 410 411 412 413

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    } else if (use_inplace_strategy && inplace_map.count(out_name)) {
      PADDLE_ENFORCE_NE(
          inplace_map[out_name], "",
          paddle::platform::errors::InvalidArgument(
              "Inplace op %s has no input corresponding to output %s.", op_type,
              out_name));

      // TODO(pangyoki): Inplace op don't have duplicable output in temporary,
      // so don't support duplicable output now.
      const auto out_template = INPUT_INITIALIZER_TEMPLATE;

      auto inplace_input_name = inplace_map[out_name];
      inplace_mapping_str += paddle::string::Sprintf(
          INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name);
      inplace_mapping_str += ",";

      // If inplace op has duplicable input, the first Varbase in input will
      // share Varbase with output.
      if (FindDuplicableInputInplaceOpSet(op_type)) {
        inplace_input_name += INPLACE_DUPLICABLE_INPUT;
      }

      // Leaf Var that doesn't stop gradient can't use inplace strategy.
      // Increase inplace_version.
      inplace_strategy_str += paddle::string::Sprintf(
          INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name,
          INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name,
          inplace_input_name);
      outs_initializer +=
          paddle::string::Sprintf(out_template, out_name, inplace_input_name);
      outs_initializer += ",";
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
459 460 461 462 463

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    return_str += paddle::string::Sprintf(return_template, out_name);
    return_str += ",";
    outs_num += 1;
  }
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    return_str.pop_back();
  }
  outs_initializer += "}";
480
  if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') {
481 482 483 484 485 486 487 488 489 490
    inplace_mapping_str.pop_back();
  }
  if (!use_inplace_strategy && FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
  if (outs_num == 0) {
491
    return_str = "Py_INCREF(Py_None);\n    return Py_None;";
492
  } else if (outs_num == 1) {
493
    return_str = "return MakeReturnPyObject(" + return_str + ");";
494
  } else {
495
    return_str = "return MakeReturnPyObject(" +
496
                 paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) +
497
                 ");";
498 499 500 501 502 503 504 505 506 507
  }
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
508 509 510 511
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      inplace_strategy_str, outs_initializer, ins_initializer,
      ins_initializer_with_null + outs_initializer_with_null +
          view_strategy_str,
512 513 514 515 516
      op_type, inplace_mapping_str, return_str);

  return op_function_str;
}

517
static std::tuple<std::vector<std::string>, std::vector<std::string>>
518
GenerateOpFunctions() {
519 520
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

521
  std::vector<std::string> op_function_list, bind_function_list;
522 523
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

524 525 526 527 528 529 530
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
531 532 533 534 535
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550
    // NOTE(pangyoki): Inplace Strategy.
    // In this case, output will reuse input varbase.
    // Dygraph mode needs to be aligned with the in-place strategy in static
    // mode, and the mapping relationships between output and input that have
    // been defined in static mode should be used in dygraph mode.
    // Find which ops need to use Inplace strategy in static mode, and get the
    // mapping relationship between Inplace output and input.
    auto& infer_inplace =
        paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;
    std::map<std::string, std::string> inplace_map;
    if (infer_inplace) {
      auto in_to_outs = infer_inplace(true);
      for (auto& inplace_pair : in_to_outs) {
        inplace_map[inplace_pair.second] = inplace_pair.first;
551 552
      }
    }
553

554
    std::string func_name = "imperative_" + op_type;
555
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);
556 557

    // generate pybind item
558
    auto bind_function_str = paddle::string::Sprintf(
559
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);
560 561 562

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
563 564 565 566 567 568 569 570 571 572 573

    if (infer_inplace) {
      // Reuse Varbase Inplace OP: op_type_.
      // The inplace OP needs a new implementation method.
      std::string inplace_op_type = op_type + "_";
      std::string inplace_func_name = "imperative_" + inplace_op_type;
      std::string inplace_op_function_str = GenerateOpFunctionsBody(
          op_proto, inplace_func_name, true, inplace_map);

      // generate pybind item
      auto inplace_bind_function_str =
574 575
          paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type,
                                  inplace_func_name, inplace_op_type);
576 577 578 579

      op_function_list.emplace_back(std::move(inplace_op_function_str));
      bind_function_list.emplace_back(std::move(inplace_bind_function_str));
    }
580
  }
581
  return std::make_tuple(op_function_list, bind_function_list);
582 583 584 585 586 587 588 589
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

590
#ifdef PADDLE_WITH_ASCEND_CL
591 592 593 594
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

595 596 597
  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\"",
                                   "\"pybind11/detail/common.h\"",
                                   "<Python.h>"};
598 599 600 601 602 603 604 605 606

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

607 608 609
  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();
610

611
  out << "namespace paddle {\n"
612 613
      << "namespace pybind {\n\n";
  out << "std::atomic<int> VarBaseUniqueNameID{0};\n";
614 615
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
616

617 618 619 620
  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";
621

622 623 624 625 626 627 628 629
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.ops failed!\"));\n"
      << "  }\n\n"
      << "  InitOpsAttrTypeMap();"
      << "}\n\n"
630 631 632 633
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
634

635
#ifdef PADDLE_WITH_ASCEND_CL
636 637
  ge::GEFinalize();
#endif
638

639 640
  return 0;
}