coalesce_tensor_op.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18 19 20
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/device_memory_aligment.h"
22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
27
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
30 31
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
32 33 34
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

35
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
36 37 38 39 40 41 42 43
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
44

45
    // Input & Output check: only support LoDTensor
46
    for (size_t i = 0; i < in_var_names.size(); ++i) {
47 48
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
49 50 51
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
52 53
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
54 55 56 57 58 59 60 61 62 63 64 65
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
66
                            out_var_names[i]));
67 68 69
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
70
    bool use_align = context.Attr<bool>("use_align");
71 72 73

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
74 75
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
76 77 78 79
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
80 81 82 83 84 85 86 87 88 89 90 91 92
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
93 94 95 96
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
97
                       context.GetPlace(), use_align);
98 99 100 101 102 103 104 105

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
106
    size_t offset = 0;
107 108
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
109 110 111 112
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
113
                              &sub_tensor);
C
chengduo 已提交
114

115 116 117 118 119
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
120 121 122 123 124
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
          framework::TensorCopy(*out_tensors[i], context.GetPlace(), dev_ctx,
                                &sub_tensor);
        }
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
      }
141 142 143 144
    }

    // Make the outputs point to the continuous space.
    offset = 0;
145 146
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
147
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
148
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
149 150
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
151 152
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
153
          .Resize(dim);
154 155 156 157
      len = use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
158
      offset += len;
159 160
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
161
    }
162
    VLOG(10) << ss.str();
163 164
  }

C
chengduo 已提交
165
 private:
166 167 168
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
169 170
      const size_t &size_of_dtype, const platform::Place &place,
      const bool use_align = true) const {
171 172 173 174 175 176
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
177
    *numel = 0;
178 179
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
180
    for (size_t i = 0; i < var_names.size(); ++i) {
181
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
182 183
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
184 185

      auto size = lod_tensors[i]->numel();
186 187 188 189
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
190
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
191 192
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
193 194 195 196 197
      *numel += use_align
                    ? platform::Alignment(
                          static_cast<size_t>(size) * size_of_dtype, place) /
                          size_of_dtype
                    : static_cast<size_t>(size);
198
    }
199 200

    VLOG(10) << ss.str();
201 202 203
  }
};

204
class CoalesceTensorOp : public framework::OperatorWithKernel {
205 206 207 208
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
209 210 211 212 213 214 215 216 217

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
218 219
};

220
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
221 222 223 224
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
225
             " coalesce_tensor operator.")
226 227 228
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
229
              "tensors of coalesce_tensor operator. And the address "
230 231 232 233 234
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
235
              "of coalesce_tensor operator. And the tensors of"
236
              " Output is sliced from the tensor of FusedOutput.");
237
    AddAttr<int>("dtype", "The output data type.");
238 239 240 241 242
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
243 244 245
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
246 247 248 249 250 251 252 253
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
254 255 256 257
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
258
    AddComment(R"DOC(
259
CoalesceTensor Operator.
260

261
coalesce_tensor is used to make the address of Output
262 263 264 265 266 267 268 269
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
270
coalesce_tensor allows copying the value of Input to Output, or
271 272
setting the Output with a constant value, or persist the original Output
value.
273 274 275 276 277 278 279 280

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

281 282
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
283
namespace ops = paddle::operators;
284
namespace plat = paddle::platform;
285
REGISTER_OP_CPU_KERNEL(
286
    coalesce_tensor,
287 288 289
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
290 291 292

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
293
    coalesce_tensor,
294 295 296 297 298
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
299
#endif