“4069262f0e06da6f240ac4c9e90ba0403a94bc4d”上不存在“paddle/fluid/operators/fill_constant_op.h”
coalesce_tensor_op.cc 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18 19 20
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/device_memory_aligment.h"
22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
27
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
30 31
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
32 33 34
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

35
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
36 37 38 39 40 41 42 43
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
44

45
    // Input & Output check: only support LoDTensor
46
    for (size_t i = 0; i < in_var_names.size(); ++i) {
47 48
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
49 50 51
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
52 53
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
54 55 56 57 58 59 60 61 62 63 64 65 66
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
67 68 69 70 71 72
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
73 74
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
75 76 77 78
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
79 80 81 82 83 84 85 86 87 88 89 90 91
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
92 93 94 95
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
C
chengduo 已提交
96
                       context.GetPlace());
97 98 99 100 101 102 103 104

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
105
    size_t offset = 0;
106 107
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
108 109 110 111
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
112
                              &sub_tensor);
C
chengduo 已提交
113

114 115
        offset += platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                  size_of_dtype;
116 117 118 119 120 121 122 123 124
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
    }

    // Make the outputs point to the continuous space.
    offset = 0;
125 126
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
127
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
128
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
129 130
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
131 132
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
133
          .Resize(dim);
134 135
      len = platform::Alignment(len * size_of_dtype, context.GetPlace()) /
            size_of_dtype;
136
      offset += len;
137 138
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
139
    }
140
    VLOG(10) << ss.str();
141 142
  }

C
chengduo 已提交
143
 private:
144 145 146
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
147
      const size_t &size_of_dtype, const platform::Place &place) const {
148 149 150 151 152 153
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
154
    *numel = 0;
155 156
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
157
    for (size_t i = 0; i < var_names.size(); ++i) {
158
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
159 160
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
161 162

      auto size = lod_tensors[i]->numel();
163 164 165 166
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
167
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
168 169
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
170 171
      *numel += platform::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                    place) /
C
chengduo 已提交
172
                size_of_dtype;
173
    }
174 175

    VLOG(10) << ss.str();
176 177 178
  }
};

179
class CoalesceTensorOp : public framework::OperatorWithKernel {
180 181 182 183
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
184 185 186 187 188 189 190 191 192

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
193 194
};

195
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
196 197 198 199
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
200
             " coalesce_tensor operator.")
201 202 203
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
204
              "tensors of coalesce_tensor operator. And the address "
205 206 207 208 209
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
210
              "of coalesce_tensor operator. And the tensors of"
211
              " Output is sliced from the tensor of FusedOutput.");
212
    AddAttr<int>("dtype", "The output data type.");
213 214 215 216 217 218 219 220 221 222 223 224 225 226
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
    AddComment(R"DOC(
227
CoalesceTensor Operator.
228

229
coalesce_tensor is used to make the address of Output
230 231 232 233 234 235 236 237
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
238
coalesce_tensor allows copying the value of Input to Output, or
239 240 241 242 243 244 245 246 247
setting the Output with a constant value.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

248 249
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
250
namespace ops = paddle::operators;
251
namespace plat = paddle::platform;
252
REGISTER_OP_CPU_KERNEL(
253
    coalesce_tensor,
254 255 256
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
257 258 259

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
260
    coalesce_tensor,
261 262 263 264 265
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
266
#endif