pooling.cu 42.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

22
template <typename PoolProcess, typename T>
23 24 25 26 27 28 29 30 31 32
__global__ void KernelPool2D(const int nthreads, const T* input_data,
                             T* output_data, const int channels,
                             const int input_height, const int input_width,
                             const int output_height, const int output_width,
                             const int ksize_height, const int ksize_width,
                             const int stride_height, const int stride_width,
                             const int padding_height, const int padding_width,
                             PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
33 34 35 36 37 38 39 40 41 42 43 44 45 46
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
47
    T ele = pool_process.initial();
48 49
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
50
        pool_process.compute(ele, input_data[h * input_width + w]);
51 52 53
      }
    }
    int pool_size = (hend - hstart) * (wend - wstart);
54
    pool_process.finalize(ele, (static_cast<T>(pool_size)));
55 56 57 58 59
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
60
__global__ void KernelPool2DGrad(
61 62 63 64 65
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
66 67 68
    const int padding_width, PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetC = (index / input_width / input_height) % channels;
    int batch_idx = index / input_width / input_height / channels;

    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int phend = min(offsetH / stride_height + 1, output_height);
    int pwend = min(offsetW / stride_width + 1, output_width);
    T gradient = 0;
    T input = input_data[index];
    int output_idx =
        (batch_idx * channels + offsetC) * output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        int hstart = ph * stride_height - padding_height;
        int wstart = pw * stride_width - padding_width;
        int hend = min(hstart + ksize_height, input_height);
        int wend = min(wstart + ksize_width, input_width);
        hstart = max(hstart, 0);
        wstart = max(wstart, 0);
        int pool_size = (hend - hstart) * (wend - wstart);
        int output_sub_idx = ph * output_width + pw;
98
        pool_process.compute(input, output_data[output_sub_idx],
C
chengduoZH 已提交
99 100
                             output_grad[output_sub_idx], gradient,
                             static_cast<T>(1.0 / pool_size));
101 102 103 104 105 106
      }
    }
    input_grad[index] = gradient;
  }
}

107
template <typename T>
108
__global__ void KernelMaxPool2DGrad(
109 110 111 112 113 114
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
    const int padding_width) {
115 116
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
    input_grad += (batch_idx * channels + c) * input_height * input_width;

    T ele = output_data[index];
    int maxIndex = -1;
    bool stop = false;
    for (int h = hstart; h < hend && !stop; ++h) {
      for (int w = wstart; w < wend && !stop; ++w) {
        if (ele == input_data[h * input_width + w]) {
          maxIndex = h * input_width + w;
          stop = true;
        }
      }
    }

    if (maxIndex != -1) {
      // atomic add
C
chengduoZH 已提交
147
      platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
148 149 150 151
    }
  }
}

152
template <typename PoolProcess, typename T>
C
chengduoZH 已提交
153
class Pool2dFunctor<platform::GPUPlace, PoolProcess, T> {
154
 public:
155 156
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
157
                  std::vector<int>& ksize, std::vector<int>& strides,
158
                  std::vector<int>& paddings, PoolProcess pool_process) {
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
174
    T* output_data = output.mutable_data<T>(context.GetPlace());
175 176 177 178 179 180

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

181
    KernelPool2D<
C
chengduoZH 已提交
182 183 184 185 186 187 188
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, output_data, input_channels,
                              input_height, input_width, output_height,
                              output_width, ksize_height, ksize_width,
                              stride_height, stride_width, padding_height,
189
                              padding_width, pool_process);
190 191 192 193
  }
};

template <typename PoolProcess, typename T>
C
chengduoZH 已提交
194
class Pool2dGradFunctor<platform::GPUPlace, PoolProcess, T> {
195
 public:
196 197
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
198 199 200
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
201
                  PoolProcess pool_process) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
218
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
219 220 221 222 223 224

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

225
    KernelPool2DGrad<
C
chengduoZH 已提交
226 227 228 229
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
230 231 232
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, output_height, output_width,
        ksize_height, ksize_width, stride_height, stride_width, padding_height,
233
        padding_width, pool_process);
234 235 236
  }
};

237
template <typename T>
C
chengduoZH 已提交
238
class MaxPool2dGradFunctor<platform::GPUPlace, T> {
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

269
    KernelMaxPool2DGrad<
270 271 272 273 274 275 276 277 278 279
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, output_height, output_width,
        ksize_height, ksize_width, stride_height, stride_width, padding_height,
        padding_width);
  }
};

C
chengduoZH 已提交
280
template class MaxPool2dGradFunctor<platform::GPUPlace, float>;
C
chengduoZH 已提交
281
template class MaxPool2dGradFunctor<platform::GPUPlace, double>;
C
chengduoZH 已提交
282 283

template class Pool2dFunctor<platform::GPUPlace,
284
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
285
template class Pool2dFunctor<platform::GPUPlace,
286
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
287
template class Pool2dGradFunctor<
288
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
289
template class Pool2dGradFunctor<
290
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
291
template class Pool2dFunctor<platform::GPUPlace,
292
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
293
template class Pool2dFunctor<platform::GPUPlace,
294
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
295
template class Pool2dGradFunctor<
296
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
297
template class Pool2dGradFunctor<
298
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
299 300

template <typename PoolProcess, typename T>
301
__global__ void KernelPool3D(
302 303 304 305 306 307
    const int nthreads, const T* input_data, T* output_data, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
308 309
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
326
    T ele = pool_process.initial();
327 328 329 330 331
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
332
          pool_process.compute(
333 334 335 336 337
              ele, input_data[(d * input_height + h) * input_width + w]);
        }
      }
    }
    int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
338
    pool_process.finalize(ele, static_cast<T>(pool_size));
339 340 341 342 343
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
344
__global__ void KernelPool3DGrad(
345 346 347 348 349 350 351
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
352 353
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
354 355 356 357 358 359 360 361 362 363
       index += blockDim.x * gridDim.x) {
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetD =
        (index / input_width / input_height) % input_depth + padding_depth;
    int offsetC = (index / input_width / input_height / input_depth) % channels;
    int batch_idx = index / input_width / input_height / input_depth / channels;

    int pdstart = (offsetD < ksize_depth)
                      ? 0
364
                      : (offsetD - ksize_depth) / stride_depth + 1;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int pdend = min((offsetD) / stride_depth + 1, output_depth);
    int phend = min((offsetH) / stride_height + 1, output_height);
    int pwend = min((offsetW) / stride_width + 1, output_width);

    T gradient = 0;
    T input = input_data[index];
    int output_idx = (batch_idx * channels + offsetC) * output_depth *
                     output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
          int dstart = pd * stride_depth - padding_depth;
          int hstart = ph * stride_height - padding_height;
          int wstart = pw * stride_width - padding_width;
          int dend = min(dstart + ksize_depth, input_depth);
          int hend = min(hstart + ksize_height, input_height);
          int wend = min(wstart + ksize_width, input_width);
          dstart = max(dstart, 0);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
396
          int output_sub_idx = (pd * output_height + ph) * output_width + pw;
397
          pool_process.compute(input, output_data[output_sub_idx],
C
chengduoZH 已提交
398 399
                               output_grad[output_sub_idx], gradient,
                               static_cast<T>(1.0 / pool_size));
400 401 402 403 404 405 406
        }
      }
    }
    input_grad[index] = gradient;
  }
}

407
template <typename T>
408
__global__ void KernelMaxPool3DGrad(
409 410 411 412 413 414 415 416
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height,
    const int padding_width) {
417
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
    T ele = output_data[index];
    bool stop = false;
    int maxIdx = -1;
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;
    input_grad +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend && !stop; ++d) {
      for (int h = hstart; h < hend && !stop; ++h) {
        for (int w = wstart; w < wend && !stop; ++w) {
          if (ele == input_data[(d * input_height + h) * input_width + w]) {
            stop = true;
            maxIdx = (d * input_height + h) * input_width + w;
          }
        }
      }
    }
    if (maxIdx != -1) {
      // atomic add
C
chengduoZH 已提交
454
      platform::CudaAtomicAdd(input_grad + maxIdx, output_grad[index]);
455 456 457 458
    }
  }
}

459
template <typename PoolProcess, class T>
C
chengduoZH 已提交
460
class Pool3dFunctor<platform::GPUPlace, PoolProcess, T> {
461
 public:
462 463
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
464
                  std::vector<int>& ksize, std::vector<int>& strides,
465
                  std::vector<int>& paddings, PoolProcess pool_process) {
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
486
    T* output_data = output.mutable_data<T>(context.GetPlace());
487 488 489 490 491 492 493

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

494
    KernelPool3D<
C
chengduoZH 已提交
495 496 497 498
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
499 500 501 502
        nthreads, input_data, output_data, input_channels, input_depth,
        input_height, input_width, output_depth, output_height, output_width,
        ksize_depth, ksize_height, ksize_width, stride_depth, stride_height,
        stride_width, padding_depth, padding_height, padding_width,
503
        pool_process);
504 505 506 507
  }
};

template <typename PoolProcess, class T>
C
chengduoZH 已提交
508
class Pool3dGradFunctor<platform::GPUPlace, PoolProcess, T> {
509
 public:
510 511
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
512 513 514
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
515
                  PoolProcess pool_process) {
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
538
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
539

540 541
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
542 543 544 545
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

546
    KernelPool3DGrad<
C
chengduoZH 已提交
547 548 549 550
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
551 552 553 554
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_depth, input_height, input_width, output_depth,
        output_height, output_width, ksize_depth, ksize_height, ksize_width,
        stride_depth, stride_height, stride_width, padding_depth,
555
        padding_height, padding_width, pool_process);
556 557 558
  }
};

559
template <class T>
C
chengduoZH 已提交
560
class MaxPool3dGradFunctor<platform::GPUPlace, T> {
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

597
    KernelMaxPool3DGrad<
598 599 600 601 602 603 604 605 606 607 608
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_depth, input_height, input_width, output_depth,
        output_height, output_width, ksize_depth, ksize_height, ksize_width,
        stride_depth, stride_height, stride_width, padding_depth,
        padding_height, padding_width);
  }
};

C
chengduoZH 已提交
609
template class MaxPool3dGradFunctor<platform::GPUPlace, float>;
C
chengduoZH 已提交
610
template class MaxPool3dGradFunctor<platform::GPUPlace, double>;
C
chengduoZH 已提交
611 612

template class Pool3dFunctor<platform::GPUPlace,
613
                             paddle::operators::math::MaxPool<float>, float>;
C
chengduoZH 已提交
614
template class Pool3dFunctor<platform::GPUPlace,
615
                             paddle::operators::math::AvgPool<float>, float>;
C
chengduoZH 已提交
616
template class Pool3dGradFunctor<
617
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<float>, float>;
C
chengduoZH 已提交
618
template class Pool3dGradFunctor<
619
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<float>, float>;
C
chengduoZH 已提交
620
template class Pool3dFunctor<platform::GPUPlace,
621
                             paddle::operators::math::MaxPool<double>, double>;
C
chengduoZH 已提交
622
template class Pool3dFunctor<platform::GPUPlace,
623
                             paddle::operators::math::AvgPool<double>, double>;
C
chengduoZH 已提交
624
template class Pool3dGradFunctor<
625
    platform::GPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
C
chengduoZH 已提交
626
template class Pool3dGradFunctor<
627
    platform::GPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
628

C
chengduoZH 已提交
629
template <typename T>
C
chengduoZH 已提交
630
__global__ void KernelMaxPool2dWithIdx(
C
chengduoZH 已提交
631 632 633 634 635
    const int nthreads, const T* input_data, T* output_data, T* mask_data,
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
    const int padding_height, const int padding_width) {
C
chengduoZH 已提交
636
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
637
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
    T ele = -FLT_MAX;
C
chengduoZH 已提交
653
    int max_index = -1;
C
chengduoZH 已提交
654 655
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
656 657 658 659
        int input_index = h * input_width + w;
        if (ele < input_data[input_index]) {
          max_index = input_index;
          ele = input_data[input_index];
C
chengduoZH 已提交
660 661 662 663
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
664
    mask_data[index] = max_index;
C
chengduoZH 已提交
665 666 667 668
  }
}

template <typename T>
C
chengduoZH 已提交
669
__global__ void KernelMaxPool2DWithIdxGrad(
C
chengduoZH 已提交
670 671 672 673 674
    const int nthreads, T* input_grad, const T* output_grad, const T* mask_data,
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
    const int padding_height, const int padding_width) {
C
chengduoZH 已提交
675
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
676 677 678 679
       index += blockDim.x * gridDim.x) {
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int c_offset = (index / input_width / input_height) % channels;
C
chengduoZH 已提交
680 681
    int batch_idx = index / input_width / input_height / channels;

C
chengduoZH 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694
    int ph_start =
        (h_offset + padding_height < ksize_height)
            ? 0
            : (h_offset + padding_height - ksize_height) / stride_height + 1;
    int pw_start =
        (w_offset + padding_width < ksize_width)
            ? 0
            : (w_offset + padding_width - ksize_width) / stride_width + 1;
    int ph_end =
        min((h_offset + padding_height) / stride_height + 1, output_height);
    int pw_end =
        min((w_offset + padding_width) / stride_width + 1, output_width);

C
chengduoZH 已提交
695
    T gradient = 0;
C
chengduoZH 已提交
696
    int input_current_featuremap_idx = h_offset * input_width + w_offset;
C
chengduoZH 已提交
697
    int output_idx =
C
chengduoZH 已提交
698 699
        (batch_idx * channels + c_offset) * output_height * output_width;

C
chengduoZH 已提交
700 701
    mask_data += output_idx;
    output_grad += output_idx;
C
chengduoZH 已提交
702 703 704
    for (int ph = ph_start; ph < ph_end; ++ph) {
      for (int pw = pw_start; pw < pw_end; ++pw) {
        if (mask_data[ph * output_width + pw] == input_current_featuremap_idx)
C
chengduoZH 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
          gradient += output_grad[ph * output_width + pw];
      }
    }
    input_grad[index] = gradient;
  }
}

template <typename T>
class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
                  framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    T* output_data = output.mutable_data<T>(context.GetPlace());
    T* mask_data = mask.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
742
    KernelMaxPool2dWithIdx<
C
chengduoZH 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, output_data, mask_data,
                              input_channels, input_height, input_width,
                              output_height, output_width, ksize_height,
                              ksize_width, stride_height, stride_width,
                              padding_height, padding_width);
  }
};

template <typename T>
class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input_grad.dims()[0];
    const int input_channels = input_grad.dims()[1];
    const int input_height = input_grad.dims()[2];
    const int input_width = input_grad.dims()[3];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* mask_data = mask.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
783
    KernelMaxPool2DWithIdxGrad<
C
chengduoZH 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_grad_data, output_grad_data,
                              mask_data, input_channels, input_height,
                              input_width, output_height, output_width,
                              ksize_height, ksize_width, stride_height,
                              stride_width, padding_height, padding_width);
  }
};

template class MaxPool2dWithIndexFunctor<platform::GPUPlace, float>;
template class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, float>;
template class MaxPool2dWithIndexFunctor<platform::GPUPlace, double>;
template class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, double>;

template <typename T>
C
chengduoZH 已提交
800
__global__ void KernelMaxPool3DWithIdx(
C
chengduoZH 已提交
801 802 803 804 805 806 807
    const int nthreads, const T* input_data, T* output_data, T* mask_data,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
    const int padding_width) {
C
chengduoZH 已提交
808
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
809 810 811 812 813 814 815
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
C
chengduoZH 已提交
816

C
chengduoZH 已提交
817 818 819 820 821 822 823 824 825
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
C
chengduoZH 已提交
826

C
chengduoZH 已提交
827
    T ele = -FLT_MAX;
C
chengduoZH 已提交
828
    int max_index = -1;
C
chengduoZH 已提交
829 830 831 832 833 834 835
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          if (ele < input_data[(d * input_height + h) * input_width + w]) {
C
chengduoZH 已提交
836 837
            max_index = (d * input_height + h) * input_width + w;
            ele = input_data[max_index];
C
chengduoZH 已提交
838 839 840 841 842
          }
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
843
    mask_data[index] = max_index;
C
chengduoZH 已提交
844 845 846 847
  }
}

template <typename T>
C
chengduoZH 已提交
848
__global__ void KernelMaxPool3DWithIdxGrad(
C
chengduoZH 已提交
849 850 851 852 853 854 855
    const int nthreads, T* input_grad, const T* output_grad, const T* mask,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
    const int padding_width) {
C
chengduoZH 已提交
856
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
857
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
858 859 860 861 862
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int d_offset = (index / input_width / input_height) % input_depth;
    int c_offset =
        (index / input_width / input_height / input_depth) % channels;
C
chengduoZH 已提交
863 864
    int batch_idx = index / input_width / input_height / input_depth / channels;

C
chengduoZH 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    int pd_start =
        (d_offset + padding_depth < ksize_depth)
            ? 0
            : (d_offset + padding_depth - ksize_depth) / stride_depth + 1;
    int ph_start =
        (h_offset + padding_height < ksize_height)
            ? 0
            : (h_offset + padding_height - ksize_height) / stride_height + 1;
    int pw_start =
        (w_offset + padding_width < ksize_width)
            ? 0
            : (w_offset + padding_width - ksize_width) / stride_width + 1;
    int pd_end =
        min((d_offset + padding_depth) / stride_depth + 1, output_depth);
    int ph_end =
        min((h_offset + padding_height) / stride_height + 1, output_height);
    int pw_end =
        min((w_offset + padding_width) / stride_width + 1, output_width);
C
chengduoZH 已提交
883 884

    T gradient = 0;
C
chengduoZH 已提交
885 886 887
    int input_current_feature_map_idx =
        (d_offset * input_height + h_offset) * input_width + w_offset;
    int output_idx = (batch_idx * channels + c_offset) * output_depth *
C
chengduoZH 已提交
888 889 890 891
                     output_height * output_width;
    mask += output_idx;
    output_grad += output_idx;

C
chengduoZH 已提交
892 893 894 895 896
    for (int pd = pd_start; pd < pd_end; ++pd) {
      for (int ph = ph_start; ph < ph_end; ++ph) {
        for (int pw = pw_start; pw < pw_end; ++pw) {
          if (mask[(pd * output_height + ph) * output_width + pw] ==
              input_current_feature_map_idx)
C
chengduoZH 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
            gradient +=
                output_grad[(pd * output_height + ph) * output_width + pw];
        }
      }
    }
    input_grad[index] = gradient;
  }
}

template <typename T>
class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
                  framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    T* output_data = output.mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
934
    T* mask_data = mask.mutable_data<T>(context.GetPlace());
C
chengduoZH 已提交
935 936 937 938 939 940 941

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
942
    KernelMaxPool3DWithIdx<
C
chengduoZH 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, mask_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width);
  }
};

template <typename T>
class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  framework::Tensor& input_grad,
                  const framework::Tensor& output_grad,
                  const framework::Tensor& mask, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input_grad.dims()[0];
    const int input_channels = input_grad.dims()[1];
    const int input_depth = input_grad.dims()[2];
    const int input_height = input_grad.dims()[3];
    const int input_width = input_grad.dims()[4];
C
chengduoZH 已提交
967 968 969
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
C
chengduoZH 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* output_grad_data = output_grad.data<T>();
    const T* mask_data = mask.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
990
    KernelMaxPool3DWithIdxGrad<
C
chengduoZH 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_grad_data, output_grad_data, mask_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width);
  }
};

template class MaxPool3dWithIndexFunctor<platform::GPUPlace, float>;
template class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, float>;
template class MaxPool3dWithIndexFunctor<platform::GPUPlace, double>;
template class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle