pooling.cu 19.1 KB
Newer Older
C
chengduoZH 已提交
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"
C
chengduoZH 已提交
16
#include "paddle/platform/cuda_helper.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

namespace paddle {
namespace operators {
namespace math {

template <typename PoolProcess, typename T>
__global__ void KernelPool2dForward(
    const int nthreads, const T* input_data, T* output_data, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
    const int padding_width, PoolProcess pool_process) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

    input_data += (batch_idx * channels + c) * input_height * input_width;
    T ele = pool_process.initial();
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        pool_process.process(ele, input_data[h * input_width + w]);
      }
    }
    int pool_size = (hend - hstart) * (wend - wstart);
    pool_process.finalize(ele, (static_cast<T>(pool_size)));
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
__global__ void KernelPool2dBackward(
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
    const int padding_width, PoolProcess pool_process) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetC = (index / input_width / input_height) % channels;
    int batch_idx = index / input_width / input_height / channels;

    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int phend = min(offsetH / stride_height + 1, output_height);
    int pwend = min(offsetW / stride_width + 1, output_width);
    T gradient = 0;
    T input = input_data[index];
    int output_idx =
        (batch_idx * channels + offsetC) * output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        int hstart = ph * stride_height - padding_height;
        int wstart = pw * stride_width - padding_width;
        int hend = min(hstart + ksize_height, input_height);
        int wend = min(wstart + ksize_width, input_width);
        hstart = max(hstart, 0);
        wstart = max(wstart, 0);
        int pool_size = (hend - hstart) * (wend - wstart);
        int output_sub_idx = ph * output_width + pw;
        pool_process.gradProcess(input, output_data[output_sub_idx],
                                 output_grad[output_sub_idx], gradient,
98
                                 static_cast<T>(1.0 / pool_size));
99 100 101 102 103 104 105 106 107 108 109 110
      }
    }
    input_grad[index] = gradient;
  }
}

template <typename PoolProcess, typename T>
class Pool2dForwardFunctor<platform::GPUPlace, PoolProcess, T> {
 public:
  void operator()(const framework::Tensor& input, framework::Tensor& output,
                  std::vector<int>& ksize, std::vector<int>& strides,
                  std::vector<int>& paddings, PoolProcess pool_process,
C
chengduoZH 已提交
111
                  const platform::DeviceContext& context) {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
127
    T* output_data = output.mutable_data<T>(context.GetPlace());
128 129 130 131 132 133

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142
    KernelPool2dForward<
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(nthreads, input_data, output_data, input_channels,
                              input_height, input_width, output_height,
                              output_width, ksize_height, ksize_width,
                              stride_height, stride_width, padding_height,
                              padding_width, pool_process);
143 144 145 146 147 148 149 150 151 152 153 154

    // CHECK_SYNC("Pool2dForwardKernel failed");
  }
};

template <typename PoolProcess, typename T>
class Pool2dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
 public:
  void operator()(const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
155 156
                  PoolProcess pool_process,
                  const platform::DeviceContext& context) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
173
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
174 175 176 177 178 179

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
180 181 182 183 184
    KernelPool2dBackward<
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, output_height, output_width,
        ksize_height, ksize_width, stride_height, stride_width, padding_height,
        padding_width, pool_process);

    // CHECK_SYNC("KernelPool2dBackward failed");
  }
};

template class Pool2dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool2dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<float>, float>;
template class Pool2dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool2dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<float>, float>;
template class Pool2dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool2dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<double>, double>;
template class Pool2dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool2dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<double>, double>;

template <typename PoolProcess, typename T>
__global__ void KernelPool3DForward(
    const int nthreads, const T* input_data, T* output_data, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
    T ele = pool_process.initial();
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          pool_process.process(
              ele, input_data[(d * input_height + h) * input_width + w]);
        }
      }
    }
    int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
    pool_process.finalize(ele, static_cast<T>(pool_size));

    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
__global__ void KernelPool3DBackward(
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
    PoolProcess pool_process) {
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
       index += blockDim.x * gridDim.x) {
    int offsetW = index % input_width + padding_width;
    int offsetH = (index / input_width) % input_height + padding_height;
    int offsetD =
        (index / input_width / input_height) % input_depth + padding_depth;
    int offsetC = (index / input_width / input_height / input_depth) % channels;
    int batch_idx = index / input_width / input_height / input_depth / channels;

    int pdstart = (offsetD < ksize_depth)
                      ? 0
276
                      : (offsetD - ksize_depth) / stride_depth + 1;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    int phstart = (offsetH < ksize_height)
                      ? 0
                      : (offsetH - ksize_height) / stride_height + 1;
    int pwstart = (offsetW < ksize_width)
                      ? 0
                      : (offsetW - ksize_width) / stride_width + 1;
    int pdend = min((offsetD) / stride_depth + 1, output_depth);
    int phend = min((offsetH) / stride_height + 1, output_height);
    int pwend = min((offsetW) / stride_width + 1, output_width);

    T gradient = 0;
    T input = input_data[index];
    int output_idx = (batch_idx * channels + offsetC) * output_depth *
                     output_height * output_width;
    output_data += output_idx;
    output_grad += output_idx;

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
          int dstart = pd * stride_depth - padding_depth;
          int hstart = ph * stride_height - padding_height;
          int wstart = pw * stride_width - padding_width;
          int dend = min(dstart + ksize_depth, input_depth);
          int hend = min(hstart + ksize_height, input_height);
          int wend = min(wstart + ksize_width, input_width);
          dstart = max(dstart, 0);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
308
          int output_sub_idx = (pd * output_height + ph) * output_width + pw;
309 310
          pool_process.gradProcess(input, output_data[output_sub_idx],
                                   output_grad[output_sub_idx], gradient,
311
                                   static_cast<T>(1.0 / pool_size));
312 313 314 315 316 317 318 319 320 321 322 323 324
        }
      }
    }
    input_grad[index] = gradient;
  }
}

template <typename PoolProcess, class T>
class Pool3dForwardFunctor<platform::GPUPlace, PoolProcess, T> {
 public:
  void operator()(const framework::Tensor& input, framework::Tensor& output,
                  std::vector<int>& ksize, std::vector<int>& strides,
                  std::vector<int>& paddings, PoolProcess pool_process,
C
chengduoZH 已提交
325
                  const platform::DeviceContext& context) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
346
    T* output_data = output.mutable_data<T>(context.GetPlace());
347 348 349 350 351 352 353

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
354 355 356 357 358
    KernelPool3DForward<
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        nthreads, input_data, output_data, input_channels, input_depth,
        input_height, input_width, output_depth, output_height, output_width,
        ksize_depth, ksize_height, ksize_width, stride_depth, stride_height,
        stride_width, padding_depth, padding_height, padding_width,
        pool_process);

    // CHECK_SYNC("Pool2dForwardKernel failed");
  }
};

template <typename PoolProcess, class T>
class Pool3dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
 public:
  void operator()(const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
376 377
                  PoolProcess pool_process,
                  const platform::DeviceContext& context) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
400
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
401

402 403
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
404 405 406 407
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

C
chengduoZH 已提交
408 409 410 411 412
    KernelPool3DBackward<
        PoolProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_depth, input_height, input_width, output_depth,
        output_height, output_width, ksize_depth, ksize_height, ksize_width,
        stride_depth, stride_height, stride_width, padding_depth,
        padding_height, padding_width, pool_process);

    // CHECK_SYNC("KernelPool2dBackward failed");
  }
};

template class Pool3dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool3dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<float>, float>;
template class Pool3dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<float>, float>;
template class Pool3dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<float>, float>;
template class Pool3dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool3dForwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<double>, double>;
template class Pool3dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::maxPool<double>, double>;
template class Pool3dBackwardFunctor<
    platform::GPUPlace, paddle::operators::math::pool::avePool<double>, double>;

}  // namespace math
}  // namespace operators
}  // namespace paddle