dot_op.h 11.1 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chentianyu03 已提交
19 20
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
L
liuwei1031 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
C
chentianyu03 已提交
26 27
using complex64 = platform::complex64;
using complex128 = platform::complex128;
L
liuwei1031 已提交
28 29 30 31 32

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

C
chentianyu03 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45
template <typename T, typename R>
struct P {
  void operator()(T a, R b);
};

template <typename DeviceContext, typename T, typename Enabel = void>
struct DotGradFunction {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx);
};

S
ShenLiang 已提交
46
template <typename DeviceContext, typename T>
C
chentianyu03 已提交
47 48 49 50 51
struct DotGradFunction<DeviceContext, T, math::EnableComplex<T>> {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx) {
S
ShenLiang 已提交
52
#ifdef __NVCC__
C
chentianyu03 已提交
53 54
    if (1 == tensor_dout->dims().size()) {
      auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);
S
ShenLiang 已提交
55

C
chentianyu03 已提交
56 57 58 59 60
      if (tensor_dx) {
        auto y = framework::EigenVector<T>::Flatten(*tensor_y);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
S
ShenLiang 已提交
61

C
chentianyu03 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_y->data<T>(), tensor_y->numel(),
                                     tensor_dx->data<T>());
        for_range(functor);
        auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);

        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = framework::EigenVector<T>::Flatten(*tensor_x);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_x->data<T>(), tensor_x->numel(),
                                     tensor_dy->data<T>());
        for_range(functor);
        auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);

        dy.device(dev) = dy * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
        tensor_dx->mutable_data<T>(ctx.GetPlace());
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_y->numel());
        math::ConjFunctor<T> functor(tensor_y->data<T>(), tensor_y->numel(),
                                     tensor_dx->data<T>());
        for_range(functor);
        auto dx = EigenMatrix<T>::From(*tensor_dx);

        dx.device(dev) = dx * dout.broadcast(size);
      }

      if (tensor_dy) {
        tensor_dy->mutable_data<T>(ctx.GetPlace());
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto& dev_raw = ctx.template device_context<DeviceContext>();
        auto& dev = *dev_raw.eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);

        paddle::platform::ForRange<DeviceContext> for_range(dev_raw,
                                                            tensor_x->numel());
        math::ConjFunctor<T> functor(tensor_x->data<T>(), tensor_x->numel(),
                                     tensor_dy->data<T>());
        for_range(functor);

        auto dy = EigenMatrix<T>::From(*tensor_dy);

        dy.device(dev) = dy * dout.broadcast(size);
      }
S
ShenLiang 已提交
124
    }
C
chentianyu03 已提交
125 126
#else
    const auto* data_dout = tensor_dout->data<T>();
S
ShenLiang 已提交
127 128

    if (tensor_dx) {
C
chentianyu03 已提交
129 130 131 132 133 134 135 136 137 138 139 140
      auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
      const auto* data_y = tensor_y->data<T>();
      const framework::DDim& dim = tensor_x->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = T(data_y[i].real, -data_y[i].imag) * data_dout[s];
      }
S
ShenLiang 已提交
141 142 143
    }

    if (tensor_dy) {
C
chentianyu03 已提交
144 145 146 147 148 149 150 151 152 153 154 155
      auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
      const auto* data_x = tensor_x->data<T>();
      const framework::DDim& dim = tensor_y->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = T(data_x[i].real, -data_x[i].imag) * data_dout[s];
      }
S
ShenLiang 已提交
156
    }
C
chentianyu03 已提交
157
#endif
S
ShenLiang 已提交
158
  }
C
chentianyu03 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
};

template <typename DeviceContext, typename T>
struct DotGradFunction<DeviceContext, T, math::DisableComplex<T>> {
  void operator()(const Tensor* tensor_x, const Tensor* tensor_y,
                  const Tensor* tensor_dout, Tensor* tensor_dx,
                  Tensor* tensor_dy,
                  const paddle::framework::ExecutionContext& ctx) {
#ifdef __NVCC__
    if (1 == tensor_dout->dims().size()) {
      auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);

      if (tensor_dx) {
        auto y = framework::EigenVector<T>::Flatten(*tensor_y);
        auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = framework::EigenVector<T>::Flatten(*tensor_x);
        auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());
        dy.device(dev) = x * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
        tensor_dx->mutable_data<T>(ctx.GetPlace());
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto dx = EigenMatrix<T>::From(*tensor_dx);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        tensor_dy->mutable_data<T>(ctx.GetPlace());
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto dy = EigenMatrix<T>::From(*tensor_dy);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
        dy.device(dev) = x * dout.broadcast(size);
      }
    }
S
ShenLiang 已提交
211
#else
C
chentianyu03 已提交
212
    const auto* data_dout = tensor_dout->data<T>();
S
ShenLiang 已提交
213

C
chentianyu03 已提交
214 215 216 217 218
    if (tensor_dx) {
      auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
      const auto* data_y = tensor_y->data<T>();
      const framework::DDim& dim = tensor_x->dims();
      size_t N = static_cast<size_t>(framework::product(dim));
S
ShenLiang 已提交
219

C
chentianyu03 已提交
220
      auto step = dim[dim.size() - 1];
S
ShenLiang 已提交
221

C
chentianyu03 已提交
222 223 224 225 226
      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = data_y[i] * data_dout[s];
      }
S
ShenLiang 已提交
227 228
    }

C
chentianyu03 已提交
229 230 231 232 233
    if (tensor_dy) {
      auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
      const auto* data_x = tensor_x->data<T>();
      const framework::DDim& dim = tensor_y->dims();
      size_t N = static_cast<size_t>(framework::product(dim));
S
ShenLiang 已提交
234

C
chentianyu03 已提交
235
      auto step = dim[dim.size() - 1];
S
ShenLiang 已提交
236

C
chentianyu03 已提交
237 238 239 240 241
      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = data_x[i] * data_dout[s];
      }
S
ShenLiang 已提交
242 243
    }
#endif
C
chentianyu03 已提交
244 245
  }
};
S
ShenLiang 已提交
246

L
liuwei1031 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
template <typename DeviceContext, typename T>
class DotKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_out = ctx.Output<Tensor>("Out");
    tensor_out->mutable_data<T>(ctx.GetPlace());

#ifdef __NVCC__
    if (1 == tensor_out->dims().size()) {
      auto out = framework::EigenScalar<T>::From(*tensor_out);
      auto x = framework::EigenVector<T>::Flatten(*tensor_x);
      auto y = framework::EigenVector<T>::Flatten(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum();
    } else {
      auto out = EigenMatrix<T>::From(*tensor_out);
      auto x = EigenMatrix<T>::From(*tensor_x);
      auto y = EigenMatrix<T>::From(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum(Eigen::DSizes<int, 1>(1));
    }
#else
    const auto* data_x = tensor_x->data<T>();
    const auto* data_y = tensor_y->data<T>();
    auto* data_out = tensor_out->data<T>();

    auto x_dims = tensor_x->dims();
    auto step = x_dims[x_dims.size() - 1];
    int size = static_cast<int>(framework::product(x_dims));

    for (int ind = -1, j = 0; j < size; ++j) {
      if (j % step == 0) {
        ++ind;
        data_out[ind] = data_x[j] * data_y[j];
      } else {
        data_out[ind] += data_x[j] * data_y[j];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
class DotGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* tensor_dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* tensor_dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    if (tensor_dx) tensor_dx->mutable_data<T>(ctx.GetPlace());
    if (tensor_dy) tensor_dy->mutable_data<T>(ctx.GetPlace());

C
chentianyu03 已提交
306 307
    DotGradFunction<DeviceContext, T>()(tensor_x, tensor_y, tensor_dout,
                                        tensor_dx, tensor_dy, ctx);
L
liuwei1031 已提交
308 309 310 311 312
  }
};

}  // namespace operators
}  // namespace paddle