dot_op.h 6.0 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

S
ShenLiang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename DeviceContext, typename T>
void DotGradFunction(const Tensor* tensor_x, const Tensor* tensor_y,
                     const Tensor* tensor_dout, Tensor* tensor_dx,
                     Tensor* tensor_dy,
                     const paddle::framework::ExecutionContext& ctx) {
#ifdef __NVCC__
  if (1 == tensor_dout->dims().size()) {
    auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);

    if (tensor_dx) {
      auto y = framework::EigenVector<T>::Flatten(*tensor_y);
      auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      Eigen::DSizes<int, 1> size(tensor_dx->numel());
      dx.device(dev) = y * dout.broadcast(size);
    }

    if (tensor_dy) {
      auto x = framework::EigenVector<T>::Flatten(*tensor_x);
      auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      Eigen::DSizes<int, 1> size(tensor_dy->numel());
      dy.device(dev) = x * dout.broadcast(size);
    }
  } else {
    auto dout = EigenMatrix<T>::From(*tensor_dout);

    if (tensor_dx) {
      tensor_dx->mutable_data<T>(ctx.GetPlace());
      auto y = EigenMatrix<T>::From(*tensor_y);
      auto dx = EigenMatrix<T>::From(*tensor_dx);
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
      dx.device(dev) = y * dout.broadcast(size);
    }

    if (tensor_dy) {
      tensor_dy->mutable_data<T>(ctx.GetPlace());
      auto x = EigenMatrix<T>::From(*tensor_x);
      auto dy = EigenMatrix<T>::From(*tensor_dy);
      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
      dy.device(dev) = x * dout.broadcast(size);
    }
  }
#else
  const auto* data_dout = tensor_dout->data<T>();

  if (tensor_dx) {
    auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
    const auto* data_y = tensor_y->data<T>();
    const framework::DDim& dim = tensor_x->dims();
    size_t N = static_cast<size_t>(framework::product(dim));

    auto step = dim[dim.size() - 1];

    int s = -1;
    for (size_t i = 0; i < N; ++i) {
      if (0 == i % step) ++s;
      data_dx[i] = data_y[i] * data_dout[s];
    }
  }

  if (tensor_dy) {
    auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
    const auto* data_x = tensor_x->data<T>();
    const framework::DDim& dim = tensor_y->dims();
    size_t N = static_cast<size_t>(framework::product(dim));

    auto step = dim[dim.size() - 1];

    int s = -1;
    for (size_t i = 0; i < N; ++i) {
      if (0 == i % step) ++s;
      data_dy[i] = data_x[i] * data_dout[s];
    }
  }
#endif
}

L
liuwei1031 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
template <typename DeviceContext, typename T>
class DotKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_out = ctx.Output<Tensor>("Out");
    tensor_out->mutable_data<T>(ctx.GetPlace());

#ifdef __NVCC__
    if (1 == tensor_out->dims().size()) {
      auto out = framework::EigenScalar<T>::From(*tensor_out);
      auto x = framework::EigenVector<T>::Flatten(*tensor_x);
      auto y = framework::EigenVector<T>::Flatten(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum();
    } else {
      auto out = EigenMatrix<T>::From(*tensor_out);
      auto x = EigenMatrix<T>::From(*tensor_x);
      auto y = EigenMatrix<T>::From(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum(Eigen::DSizes<int, 1>(1));
    }
#else
    const auto* data_x = tensor_x->data<T>();
    const auto* data_y = tensor_y->data<T>();
    auto* data_out = tensor_out->data<T>();

    auto x_dims = tensor_x->dims();
    auto step = x_dims[x_dims.size() - 1];
    int size = static_cast<int>(framework::product(x_dims));

    for (int ind = -1, j = 0; j < size; ++j) {
      if (j % step == 0) {
        ++ind;
        data_out[ind] = data_x[j] * data_y[j];
      } else {
        data_out[ind] += data_x[j] * data_y[j];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
class DotGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* tensor_dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* tensor_dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    if (tensor_dx) tensor_dx->mutable_data<T>(ctx.GetPlace());
    if (tensor_dy) tensor_dy->mutable_data<T>(ctx.GetPlace());

S
ShenLiang 已提交
168 169
    DotGradFunction<DeviceContext, T>(tensor_x, tensor_y, tensor_dout,
                                      tensor_dx, tensor_dy, ctx);
L
liuwei1031 已提交
170 171 172 173 174
  }
};

}  // namespace operators
}  // namespace paddle