voc2012.py 5.6 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import io
import tarfile
import numpy as np
from PIL import Image

22
import paddle
K
Kaipeng Deng 已提交
23
from paddle.io import Dataset
24
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
25 26 27

__all__ = ["VOC2012"]

L
LielinJiang 已提交
28
VOC_URL = 'https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar'
K
Kaipeng Deng 已提交
29

30
VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd'
K
Kaipeng Deng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt'
DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg'
LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png'

CACHE_DIR = 'voc2012'

MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"}


class VOC2012(Dataset):
    """
    Implementation of `VOC2012 <http://host.robots.ox.ac.uk/pascal/VOC/voc2012/>`_ dataset

L
LielinJiang 已提交
44 45 46
    To speed up the download, we put the data on https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar. 
    Original data can get from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.

K
Kaipeng Deng 已提交
47 48 49 50 51 52
    Args:
        data_file(str): path to data file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train', 'valid' or 'test' mode. Default 'train'.
        download(bool): whether to download dataset automatically if
            :attr:`data_file` is not set. Default True
53 54 55 56
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
57 58 59 60 61

    Examples:

        .. code-block:: python

62 63
            import paddle
            from paddle.vision.datasets import VOC2012
64
            from paddle.vision.transforms import Normalize
K
Kaipeng Deng 已提交
65

66 67 68
            class SimpleNet(paddle.nn.Layer):
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
69

70 71
                def forward(self, image, label):
                    return paddle.sum(image), label
K
Kaipeng Deng 已提交
72 73


74 75 76 77
            normalize = Normalize(mean=[0.5, 0.5, 0.5],
                                  std=[0.5, 0.5, 0.5],
                                  data_format='HWC')
            voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2')
K
Kaipeng Deng 已提交
78

79 80 81 82
            for i in range(10):
                image, label= voc2012[i]
                image = paddle.cast(paddle.to_tensor(image), 'float32')
                label = paddle.to_tensor(label)
K
Kaipeng Deng 已提交
83

84 85 86
                model = SimpleNet()
                image, label= model(image, label)
                print(image.numpy().shape, label.numpy().shape)
K
Kaipeng Deng 已提交
87 88 89 90 91 92 93

    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
94 95
                 download=True,
                 backend=None):
K
Kaipeng Deng 已提交
96 97
        assert mode.lower() in ['train', 'valid', 'test'], \
            "mode should be 'train', 'valid' or 'test', but got {}".format(mode)
98 99 100 101 102 103 104 105 106

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
                "Expected backend are one of ['pil', 'cv2'], but got {}"
                .format(backend))
        self.backend = backend

K
Kaipeng Deng 已提交
107 108 109 110 111 112 113 114 115 116 117 118
        self.flag = MODE_FLAG_MAP[mode.lower()]

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
            self.data_file = _check_exists_and_download(
                data_file, VOC_URL, VOC_MD5, CACHE_DIR, download)
        self.transform = transform

        # read dataset into memory
        self._load_anno()

119 120
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def _load_anno(self):
        self.name2mem = {}
        self.data_tar = tarfile.open(self.data_file)
        for ele in self.data_tar.getmembers():
            self.name2mem[ele.name] = ele

        set_file = SET_FILE.format(self.flag)
        sets = self.data_tar.extractfile(self.name2mem[set_file])

        self.data = []
        self.labels = []

        for line in sets:
            line = line.strip()
            data = DATA_FILE.format(line.decode('utf-8'))
            label = LABEL_FILE.format(line.decode('utf-8'))
            self.data.append(data)
            self.labels.append(label)

    def __getitem__(self, idx):
        data_file = self.data[idx]
        label_file = self.labels[idx]

        data = self.data_tar.extractfile(self.name2mem[data_file]).read()
        label = self.data_tar.extractfile(self.name2mem[label_file]).read()
        data = Image.open(io.BytesIO(data))
        label = Image.open(io.BytesIO(label))
148 149 150 151 152

        if self.backend == 'cv2':
            data = np.array(data)
            label = np.array(label)

K
Kaipeng Deng 已提交
153 154
        if self.transform is not None:
            data = self.transform(data)
155 156 157 158 159

        if self.backend == 'cv2':
            return data.astype(self.dtype), label.astype(self.dtype)

        return data, label
K
Kaipeng Deng 已提交
160 161 162

    def __len__(self):
        return len(self.data)
163 164 165 166

    def __del__(self):
        if self.data_tar:
            self.data_tar.close()