# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import io import tarfile import numpy as np from PIL import Image import paddle from paddle.io import Dataset from paddle.dataset.common import _check_exists_and_download __all__ = ["VOC2012"] VOC_URL = 'https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar' VOC_MD5 = '6cd6e144f989b92b3379bac3b3de84fd' SET_FILE = 'VOCdevkit/VOC2012/ImageSets/Segmentation/{}.txt' DATA_FILE = 'VOCdevkit/VOC2012/JPEGImages/{}.jpg' LABEL_FILE = 'VOCdevkit/VOC2012/SegmentationClass/{}.png' CACHE_DIR = 'voc2012' MODE_FLAG_MAP = {'train': 'trainval', 'test': 'train', 'valid': "val"} class VOC2012(Dataset): """ Implementation of `VOC2012 `_ dataset To speed up the download, we put the data on https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar. Original data can get from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar. Args: data_file(str): path to data file, can be set None if :attr:`download` is True. Default None mode(str): 'train', 'valid' or 'test' mode. Default 'train'. download(bool): whether to download dataset automatically if :attr:`data_file` is not set. Default True backend(str, optional): Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` , default backend is 'pil'. Default: None. Examples: .. code-block:: python import paddle from paddle.vision.datasets import VOC2012 from paddle.vision.transforms import Normalize class SimpleNet(paddle.nn.Layer): def __init__(self): super(SimpleNet, self).__init__() def forward(self, image, label): return paddle.sum(image), label normalize = Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], data_format='HWC') voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2') for i in range(10): image, label= voc2012[i] image = paddle.cast(paddle.to_tensor(image), 'float32') label = paddle.to_tensor(label) model = SimpleNet() image, label= model(image, label) print(image.numpy().shape, label.numpy().shape) """ def __init__(self, data_file=None, mode='train', transform=None, download=True, backend=None): assert mode.lower() in ['train', 'valid', 'test'], \ "mode should be 'train', 'valid' or 'test', but got {}".format(mode) if backend is None: backend = paddle.vision.get_image_backend() if backend not in ['pil', 'cv2']: raise ValueError( "Expected backend are one of ['pil', 'cv2'], but got {}" .format(backend)) self.backend = backend self.flag = MODE_FLAG_MAP[mode.lower()] self.data_file = data_file if self.data_file is None: assert download, "data_file is not set and downloading automatically is disabled" self.data_file = _check_exists_and_download( data_file, VOC_URL, VOC_MD5, CACHE_DIR, download) self.transform = transform # read dataset into memory self._load_anno() self.dtype = paddle.get_default_dtype() def _load_anno(self): self.name2mem = {} self.data_tar = tarfile.open(self.data_file) for ele in self.data_tar.getmembers(): self.name2mem[ele.name] = ele set_file = SET_FILE.format(self.flag) sets = self.data_tar.extractfile(self.name2mem[set_file]) self.data = [] self.labels = [] for line in sets: line = line.strip() data = DATA_FILE.format(line.decode('utf-8')) label = LABEL_FILE.format(line.decode('utf-8')) self.data.append(data) self.labels.append(label) def __getitem__(self, idx): data_file = self.data[idx] label_file = self.labels[idx] data = self.data_tar.extractfile(self.name2mem[data_file]).read() label = self.data_tar.extractfile(self.name2mem[label_file]).read() data = Image.open(io.BytesIO(data)) label = Image.open(io.BytesIO(label)) if self.backend == 'cv2': data = np.array(data) label = np.array(label) if self.transform is not None: data = self.transform(data) if self.backend == 'cv2': return data.astype(self.dtype), label.astype(self.dtype) return data, label def __len__(self): return len(self.data) def __del__(self): if self.data_tar: self.data_tar.close()