matmul_mkldnn_op.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

W
wanghuancoder 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

27 28 29 30 31 32
namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using framework::DataLayout;
33
using framework::ExecutionContext;
34 35
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
36 37
using platform::MKLDNNGetDataType;
using platform::to_void_cast;
38 39
using Tensor = framework::Tensor;

40 41 42 43 44
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static framework::DDim RowMatrixDimsFromVector(const framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static framework::DDim ColumnMatrixDimsFromVector(
    const framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
    if (IsInitialized()) {
      UpdateDataPointers(ctx);
      Execute();
      SetOutputFormat(ctx);
      return;
    }
    CreateMemories(ctx);
    CreatePrimitive(ctx);
    Execute();
    SetOutputFormat(ctx);
    SetInitialized();
  }

 private:
  struct MatMulDims {
78 79
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));

    PADDLE_ENFORCE_EQ(
        in_rank, axis_size,
        platform::errors::InvalidArgument("The input dimension's size "
                                          "should be equal to the axis's size. "
                                          "But received dimension is %d, "
                                          "axis's size is %d",
                                          in_rank, axis_size));

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

  std::pair<math::MatDescriptor, memory::dims> GetInputDimsAndStrides(
      const ExecutionContext& ctx, std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
    math::MatDescriptor mat_dim =
        math::CreateMatrixDescriptor(MatrixDimsFromVector(new_dims), 0,
                                     ctx.Attr<bool>("transpose_" + input_name));

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

163 164 165 166 167 168 169 170 171 172 173 174 175
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && IsOutputFused(ctx)) *out_strides = {N, b * N, 1};
  }

176
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
177 178 179 180 181 182
    math::MatDescriptor mat_dim_x;
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
    math::MatDescriptor mat_dim_y;
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
183 184 185 186 187 188 189 190 191 192 193 194 195

    const auto x_bs = mat_dim_x.batch_size_;
    const auto y_bs = mat_dim_y.batch_size_;
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
                      platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

    // Store 1 if both batches are zero, otherwise save the nonzero batch
    const memory::dim BS = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
196 197 198

    batch_size_ = 1;
    auto b = BS;
199 200 201 202
    if (BS > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
203 204 205 206 207 208
      b = BS / batch_size_;
    }
    memory::dims x_dims = {b, M, K};
    memory::dims y_dims = {b, K, N};
    memory::dims out_dims = {b, M, N};

209 210 211
    x_offset_ = b * M * K * sizeof(XT);
    y_offset_ = b * K * N * sizeof(YT);
    out_offset_ = b * M * N * sizeof(OT);
212 213

    // Translate transA and transB
214 215 216 217 218 219
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
220 221 222 223 224
    memory::dims out_strides = memory::dims{M * N, N, 1};

    CorrectStridesWhenFloatOutputFused(ctx, N, b, &out_strides);

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
225 226 227 228 229
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);

230 231 232 233
    x_mem_ = CreateMemory<XT>(matmul_dims.x_dims, matmul_dims.x_strides,
                              ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ = CreateMemory<YT>(matmul_dims.y_dims, matmul_dims.y_strides,
                              ctx.Input<Tensor>("Y")->data<YT>());
234
    out_mem_ = CreateMemory<OT>(
235
        matmul_dims.out_dims, matmul_dims.out_strides,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

  void Execute() {
    dnnl::stream stream(engine_);
264 265 266 267

    void* x_ptr = x_mem_.get_data_handle();
    void* y_ptr = y_mem_.get_data_handle();
    void* out_ptr = out_mem_.get_data_handle();
268
    for (uint16_t i = 0; i < batch_size_; i++) {
269 270 271 272 273 274 275 276
      x_mem_.set_data_handle(x_ptr);
      y_mem_.set_data_handle(y_ptr);
      out_mem_.set_data_handle(out_ptr);
      matmul_prim_.execute(stream, {
                                       {MKLDNN_ARG_SRC, x_mem_},
                                       {MKLDNN_ARG_WEIGHTS, y_mem_},
                                       {MKLDNN_ARG_DST, out_mem_},
                                   });
277 278 279
      x_ptr = static_cast<char*>(x_ptr) + x_offset_;
      y_ptr = static_cast<char*>(y_ptr) + y_offset_;
      out_ptr = static_cast<char*>(out_ptr) + out_offset_;
280
    }
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
    using platform::MKLDNNFormatForSize;
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
        MKLDNNFormatForSize(out->dims().size(), MKLDNNMemoryFormat::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  void UpdateDataPointers(const ExecutionContext& ctx) {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    x_mem_.set_data_handle(to_void_cast(x->data<XT>()));
    y_mem_.set_data_handle(to_void_cast(y->data<YT>()));
    out_mem_.set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
308 309 310 311 312 313
  struct memory_offsets {
    size_t x_offset;
    size_t y_offset;
    size_t out_offset;
  };

314 315 316 317 318
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
319 320 321 322
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
323 324 325 326 327 328 329 330
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
331
  const auto batch_size = ctx.Input<Tensor>("X")->dims()[0];
332 333

  const std::string key =
334
      platform::CreateKey(platform::ThreadIDasStr(), batch_size, out_name);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
  if (!is_int8 || force_fp32_output) {
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
class DNNLMatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(ctx.Attr<int>("head_number"), 1,
                        platform::errors::Unimplemented(
                            "DNNL matmul doesn't support multiple heads."));
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::DNNLMatMulKernel<float>, ops::DNNLMatMulKernel<int8_t>,
                   ops::DNNLMatMulKernel<uint8_t>);