lrn_op.cc 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
16
#include <string>
17
#include <vector>
18
#include "paddle/fluid/operators/math/blas.h"
19
#include "paddle/fluid/operators/math/math_function.h"
T
Tomasz Patejko 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;
28
using DataLayout = framework::DataLayout;
G
gongweibao 已提交
29

30
template <typename T>
Q
QI JUN 已提交
31
struct LRNFunctor<platform::CPUDeviceContext, T> {
32 33 34
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
35
                  T k, T alpha, T beta, const DataLayout data_layout) {
36 37
    auto place = ctx.GetPlace();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    math::Transpose<platform::CPUDeviceContext, T, 4> transpose;
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
    Tensor in_transpose, mid_transpose, out_transpose;
    // if channel_last, transpose to channel_first
    if (data_layout == DataLayout::kNHWC) {
      auto in_dims = input.dims();
      std::vector<int64_t> shape(
          {in_dims[0], in_dims[3], in_dims[1], in_dims[2]});
      in_transpose.mutable_data<T>(framework::make_ddim(shape), place);
      mid_transpose.mutable_data<T>(framework::make_ddim(shape), place);
      out_transpose.mutable_data<T>(framework::make_ddim(shape), place);
      std::vector<int> axis = {0, 3, 1, 2};
      transpose(dev_ctx, input, &in_transpose, axis);
    } else {
      in_transpose = input;
      mid_transpose = *mid;
      out_transpose = *out;
      mid_transpose.mutable_data<T>(mid->dims(), place);
      out_transpose.mutable_data<T>(out->dims(), place);
    }

    const T* idata = in_transpose.data<T>();
    T* odata = out_transpose.data<T>();
    T* mdata = mid_transpose.data<T>();

63 64 65 66 67 68 69 70 71 72 73
    Tensor squared;
    T* sdata = squared.mutable_data<T>({1, C + n - 1, H, W}, place);
    std::memset(sdata, 0, sizeof(T) * squared.numel());
    for (int i = 0; i < mid->numel(); ++i) {
      mdata[i] = k;
    }
    int img_size = H * W;
    int fea_size = C * img_size;
    int pre_pad = (n - 1) / 2;
    // compute batches one by one
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
74
      blas.VSQUARE(fea_size, idata + i * fea_size, sdata + pre_pad * img_size);
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
      // init the first channel of mid
      for (int c = 0; c < n; ++c) {
        blas.AXPY(img_size, alpha, sdata + c * img_size, mdata + i * fea_size);
      }
      for (int c = 1; c < C; ++c) {
        // copy previous scale
        int mid_offset = i * fea_size + c * img_size;
        std::memcpy(mdata + mid_offset, mdata + mid_offset - img_size,
                    img_size * sizeof(T));
        // add last
        blas.AXPY(img_size, alpha, sdata + (c + n - 1) * img_size,
                  mdata + mid_offset);
        // sub rest
        blas.AXPY(img_size, -alpha, sdata + (c - 1) * img_size,
                  mdata + mid_offset);
90 91
      }
    }
92 93 94
    // compute the final output
    blas.VPOW(mid->numel(), mdata, -beta, odata);
    blas.VMUL(mid->numel(), odata, idata, odata);
95 96 97 98 99 100 101

    // if channel_last, transpose the output(NCHW) to channel_last
    if (data_layout == DataLayout::kNHWC) {
      std::vector<int> axis = {0, 2, 3, 1};
      transpose(dev_ctx, mid_transpose, mid, axis);
      transpose(dev_ctx, out_transpose, out, axis);
    }
102 103
  }
};
Q
QI JUN 已提交
104 105
template struct LRNFunctor<platform::CPUDeviceContext, float>;
template struct LRNFunctor<platform::CPUDeviceContext, double>;
106 107

template <typename T>
Q
QI JUN 已提交
108
struct LRNGradFunctor<platform::CPUDeviceContext, T> {
109 110 111 112
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
113
                  int n, T alpha, T beta, const DataLayout data_layout) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127
    T ratio = -2 * alpha * beta;
    auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
    x_g_e = x_g_e.constant(0.0);

    auto e_x = framework::EigenTensor<T, 4>::From(x);
    auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
    auto e_out = framework::EigenTensor<T, 4>::From(out);
    auto e_out_g = framework::EigenTensor<T, 4>::From(out_g);
    auto e_mid = framework::EigenTensor<T, 4>::From(mid);

    const int start = -(n - 1) / 2;
    const int end = start + n;
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
128 129 130 131 132 133
        auto offsets = Eigen::array<int, 4>({{m, i, 0, 0}});
        auto extents = Eigen::array<int, 4>({{1, 1, H, W}});
        if (data_layout == DataLayout::kNHWC) {
          offsets = Eigen::array<int, 4>({{m, 0, 0, i}});
          extents = Eigen::array<int, 4>({{1, H, W, 1}});
        }
134

135 136 137 138
        auto i_x = e_x.slice(offsets, extents);
        auto i_x_g = e_x_g.slice(offsets, extents);
        auto i_out_g = e_out_g.slice(offsets, extents);
        auto i_mid = e_mid.slice(offsets, extents);
139 140

        i_x_g = i_mid.pow(-beta) * i_out_g;
Q
qingqing01 已提交
141
        for (int c = start; c < end; c++) {
142 143 144 145 146
          int ch = i + c;
          if (ch < 0 || ch >= C) {
            continue;
          }

147 148 149 150 151 152 153 154
          if (data_layout != DataLayout::kNHWC) {
            offsets = Eigen::array<int, 4>({{m, ch, 0, 0}});
          } else {
            offsets = Eigen::array<int, 4>({{m, 0, 0, ch}});
          }
          auto c_out = e_out.slice(offsets, extents);
          auto c_mid = e_mid.slice(offsets, extents);
          auto c_out_g = e_out_g.slice(offsets, extents);
155 156 157 158 159 160 161

          i_x_g += ratio * c_out_g * c_out * i_x / c_mid;
        }
      }
    }
  }
};
Q
QI JUN 已提交
162 163
template struct LRNGradFunctor<platform::CPUDeviceContext, float>;
template struct LRNGradFunctor<platform::CPUDeviceContext, double>;
164

G
gongweibao 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
class LRNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MidOut"),
                   "MidOut(Out) of LRNOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dim.size(), 4, "Input(X)'rank of LRNOp should be 4.");

180 181 182
    int n = ctx->Attrs().Get<int>("n");
    PADDLE_ENFORCE(n > 0 && n % 2 == 1, "n should be positive odd value");

G
gongweibao 已提交
183 184
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
185
    ctx->SetOutputDim("MidOut", x_dim);
G
gongweibao 已提交
186
  }
T
Tomasz Patejko 已提交
187 188

  framework::OpKernelType GetExpectedKernelType(
189
      const framework::ExecutionContext& ctx) const override {
190 191
    framework::LibraryType library_{framework::LibraryType::kPlain};
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
192
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
193 194 195 196 197 198 199 200 201 202
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
T
Tomasz Patejko 已提交
203
  }
G
gongweibao 已提交
204 205 206 207 208
};

template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
209
  void Make() override {
K
kexinzhao 已提交
210 211 212
    AddInput("X",
             "(Tensor) The input of LRN operator. "
             "It must be a 4D tenor with NCHW format.");
G
gongweibao 已提交
213 214 215
    AddOutput("Out",
              "(Tensor) The output of LRN operator, which is also the 4D "
              "tensor with NCHW format.");
K
kexinzhao 已提交
216 217 218 219 220 221 222 223
    AddOutput("MidOut",
              "(Tensor) Middle result of LRN operator. It's computed in "
              "forward process and also used in backward process.");

    AddAttr<int>("n",
                 "(int default 5) "
                 "n is the \"adjacent\" kernel that maps "
                 "at the same spatial position.")
G
gongweibao 已提交
224 225 226
        .SetDefault(5)
        .GreaterThan(0);

K
kexinzhao 已提交
227 228 229
    AddAttr<T>("k",
               "(float, default 2.0) "
               "k is the bias.")
G
gongweibao 已提交
230 231 232
        .SetDefault(2.0)
        .GreaterThan(0.0);

K
kexinzhao 已提交
233 234 235
    AddAttr<T>("alpha",
               "(float, default 0.0001) "
               "alpha is the scale number.")
G
gongweibao 已提交
236 237 238
        .SetDefault(0.0001)
        .GreaterThan(0.0);

K
kexinzhao 已提交
239 240 241
    AddAttr<T>("beta",
               "(float, default 0.75) "
               "beta is the power number.")
G
gongweibao 已提交
242 243
        .SetDefault(0.75)
        .GreaterThan(0.0);
T
Tomasz Patejko 已提交
244 245 246 247 248 249 250 251 252 253
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
254
    AddAttr<bool>("is_test",
255 256
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
257
        .SetDefault(false);
G
gongweibao 已提交
258 259

    AddComment(R"DOC(
K
kexinzhao 已提交
260
Local Response Normalization Operator.
G
gongweibao 已提交
261

262 263
This operator comes from the paper:
<<ImageNet Classification with Deep Convolutional Neural Networks>>.
G
gongweibao 已提交
264

K
kexinzhao 已提交
265
The original formula is:
G
gongweibao 已提交
266

K
kexinzhao 已提交
267 268
$$
Output(i, x, y) = Input(i, x, y) / \left(
X
xiaoting 已提交
269
k + \alpha \sum\limits^{\min(C-1, i + n/2)}_{j = \max(0, i - n/2)}
K
kexinzhao 已提交
270 271 272
(Input(j, x, y))^2
\right)^{\beta}
$$
G
gongweibao 已提交
273

K
kexinzhao 已提交
274
Function implementation:
G
gongweibao 已提交
275

276 277
Inputs and outpus are in NCHW or NHWC format, while input.shape.ndims() equals 4.
If NCHW, the dimensions 0 ~ 3 represent batch size, feature maps, rows,
K
kexinzhao 已提交
278
and columns, respectively.
G
gongweibao 已提交
279

K
kexinzhao 已提交
280 281
Input and Output in the formula above is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
G
gongweibao 已提交
282

K
kexinzhao 已提交
283 284 285
C is the number of feature maps of one image. n is a hyper-parameter
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
Q
QI JUN 已提交
286

K
kexinzhao 已提交
287
)DOC");
G
gongweibao 已提交
288 289 290 291 292 293 294 295 296 297
  }
};

class LRNOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
298
    PADDLE_ENFORCE(ctx->HasInput("MidOut"), "Input(MidOut) should not be null");
G
gongweibao 已提交
299 300 301 302 303 304 305
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

T
Tomasz Patejko 已提交
306
  framework::OpKernelType GetExpectedKernelType(
307
      const framework::ExecutionContext& ctx) const override {
308 309
    framework::LibraryType library_{framework::LibraryType::kPlain};
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
310
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
311 312 313 314 315 316 317 318 319 320
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
T
Tomasz Patejko 已提交
321 322
  }
};
G
gongweibao 已提交
323 324 325 326
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
327 328 329 330 331
REGISTER_OPERATOR(
    lrn, ops::LRNOp, ops::LRNOpMaker<float>,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);

332
REGISTER_OPERATOR(lrn_grad, ops::LRNOpGrad);
Q
QI JUN 已提交
333 334 335 336
REGISTER_OP_CPU_KERNEL(
    lrn, ops::LRNKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    lrn_grad, ops::LRNGradKernel<paddle::platform::CPUDeviceContext, float>);