提交 9d142d50 编写于 作者: G gongweibao 提交者: GitHub

Local response normalize. (#4426)

Add local response normalize
上级 4273b351
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lrn_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class LRNOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LRNOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of LRNOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("MidOut"),
"MidOut(Out) of LRNOp should not be null.");
auto x_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dim.size(), 4, "Input(X)'rank of LRNOp should be 4.");
ctx->SetOutputDim("Out", x_dim);
ctx->SetOutputDim("MidOut", x_dim);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LRNOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", R"DOC(
(Tensor) The input of LRN operator. It must be a 4D tenor with NCHW format.
)DOC");
AddOutput("Out",
"(Tensor) The output of LRN operator, which is also the 4D "
"tensor with NCHW format.");
AddOutput("MidOut", R"Doc(
(Tensor)Middle result of lrn op.It's computed in forward process
and also used in backward process.
)Doc");
AddAttr<int>("n", R"DOC(
(int, default 5)n is “adjacent” kernel maps at the same spatial position.
)DOC")
.SetDefault(5)
.GreaterThan(0);
AddAttr<T>("k", R"DOC(
(float, default 2.0)k is the bias.
)DOC")
.SetDefault(2.0)
.GreaterThan(0.0);
AddAttr<T>("alpha", R"DOC(
(float, default 0.0001)alpha is the scale number.
)DOC")
.SetDefault(0.0001)
.GreaterThan(0.0);
AddAttr<T>("beta", R"DOC(
(float, default 0.75)beta is the power number.
)DOC")
.SetDefault(0.75)
.GreaterThan(0.0);
AddComment(R"DOC(
Local Response Normalization.
This Function comes from the paper
"ImageNet Classification with Deep Convolutional Neural Networks".
The original formula is:
Input(i, x, y)
Output(i, x, y) = ----------------------------------------------
-- upper
(k + alpha * > (Input(j, x, y))^2) ^ (beta)
-- j = lower
upper is `min(C, c + n/2)`
lower if `max(0, c - n/2)`
Function implementation:
inputs and outpus is NCHW format, while input.shape.ndims() is equal 4.
And the meaning of each dimension(0-3) is respectively batch size,
feature maps, rows and columns.
Input and Output in the above formula is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
C is the number of feature maps of one image, and n is a hyper-parameters
is configured when Function is initialized. The sum in the denominator
is the sum of the same position in the neighboring maps.
)DOC");
}
};
class LRNOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("MidOut")),
"Input(MidOut@GRAD) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(lrn, ops::LRNOp, ops::LRNOpMaker<float>, lrn_grad, ops::LRNOpGrad);
REGISTER_OP_CPU_KERNEL(lrn, ops::LRNKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(lrn_grad,
ops::LRNGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/lrn_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(lrn, ops::LRNKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(lrn_grad,
ops::LRNGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class LRNKernel : public framework::OpKernel<T> {
public:
using Tensor = framework::Tensor;
// f(x) = x * ( k + alpha * SUM((x)^2) )^(-beta)
// x represents inputs
// f(x) represents outputs
void Compute(const framework::ExecutionContext& ctx) const override {
// input
const Tensor* x = ctx.Input<Tensor>("X");
auto x_dims = x->dims();
// NCHW
int N = x_dims[0];
int C = x_dims[1];
int H = x_dims[2];
int W = x_dims[3];
Tensor* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
// MidOut save the intermediate result for backward
Tensor* mid = ctx.Output<Tensor>("MidOut");
mid->mutable_data<T>(ctx.GetPlace());
int n = ctx.Attr<int>("n");
T alpha = ctx.Attr<float>("alpha");
T beta = ctx.Attr<float>("beta");
T k = ctx.Attr<float>("k");
PADDLE_ENFORCE(n > 0, "n should >= 0");
PADDLE_ENFORCE(alpha >= 0.0, "alpha should >= 0.0");
PADDLE_ENFORCE(beta >= 0.0, "beta should >= 0.0");
PADDLE_ENFORCE(k >= 0.0, "k should >= 0.0");
auto x_v = framework::EigenVector<T>::Flatten(*x);
const int start = -(n - 1) / 2;
const int end = start + n;
auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
e_mid.device(ctx.GetEigenDevice<Place>()) = e_mid.constant(k);
auto e_x = framework::EigenTensor<T, 4>::From(*x);
for (int m = 0; m < N; m++) {
for (int i = 0; i < C; i++) {
for (int c = start; c <= end; c++) {
int ch = i + c;
if (ch >= 0 && ch < C) {
auto s = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto r = e_x.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
s.device(ctx.GetEigenDevice<Place>()) += alpha * r.square();
}
}
}
}
auto out_e = framework::EigenVector<T>::Flatten(*out);
out_e.device(ctx.GetEigenDevice<Place>()) =
x_v * e_mid.reshape(Eigen::DSizes<int, 1>(e_mid.size())).pow(-beta);
}
};
/**
* \brief Backward calculation for normalization with across maps.
*
* Function implementation:
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
* -- upper
* + > (OutputGrad * OutputValue * (-2 * alpha * beta) / MidOut) * InputValue
* -- lower
*
* The data of inputs/outputs format is the same as the forward interface
* and is NCHW.
*
* The upper and lower is the same as forward. The logic of the sum
* is also the same as forward.
*/
template <typename Place, typename T>
class LRNGradKernel : public framework::OpKernel<T> {
public:
using Tensor = framework::Tensor;
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* x = ctx.Input<Tensor>("X");
const Tensor* out = ctx.Input<Tensor>("Out");
const Tensor* out_g = ctx.Input<Tensor>(framework::GradVarName("Out"));
const Tensor* mid = ctx.Input<Tensor>("MidOut");
auto x_g = ctx.Output<Tensor>(framework::GradVarName("X"));
x_g->mutable_data<T>(ctx.GetPlace());
auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
x_g_e.device(ctx.GetEigenDevice<Place>()) = x_g_e.constant(0.0);
auto x_dims = x->dims();
int N = x_dims[0];
int C = x_dims[1];
int H = x_dims[2];
int W = x_dims[3];
int n = ctx.Attr<int>("n");
T alpha = ctx.Attr<T>("alpha");
T beta = ctx.Attr<T>("beta");
T ratio = -2 * alpha * beta;
auto e_x = framework::EigenTensor<T, 4>::From(*x);
auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
auto e_out = framework::EigenTensor<T, 4>::From(*out);
auto e_out_g = framework::EigenTensor<T, 4>::From(*out_g);
auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
const int start = -(n - 1) / 2;
const int end = start + n;
for (int m = 0; m < N; m++) {
for (int i = 0; i < C; i++) {
auto i_x = e_x.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto i_x_g = e_x_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto i_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto i_mid = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
i_x_g.device(ctx.GetEigenDevice<Place>()) = i_mid.pow(-beta) * i_out_g;
for (int c = start; c <= end; c++) {
int ch = i + c;
if (ch < 0 || ch >= C) {
continue;
}
auto c_out = e_out.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto c_mid = e_mid.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
auto c_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
Eigen::array<int, 4>({{1, 1, H, W}}));
i_x_g.device(ctx.GetEigenDevice<Place>()) +=
ratio * c_out_g * c_out * i_x / c_mid;
}
}
}
}
};
} // namespace operators
} // namespace paddle
import unittest
import numpy as np
from op_test import OpTest
class TestLRNOp(OpTest):
def get_input(self):
''' TODO(gongweibao): why it's grad diff is so large?
x = np.ndarray(
shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
for m in range(0, self.N):
for i in range(0, self.C):
for h in range(0, self.H):
for w in range(0, self.W):
x[m][i][h][w] = m * self.C * self.H * self.W + \
i * self.H * self.W + \
h * self.W + w + 1
'''
x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
return x + 1
def get_out(self):
start = -(self.n - 1) / 2
end = start + self.n
mid = np.empty((self.N, self.C, self.H, self.W), dtype=float)
mid.fill(self.k)
for m in range(0, self.N):
for i in range(0, self.C):
for c in range(start, end + 1):
ch = i + c
if ch < 0 or ch >= self.C:
continue
s = mid[m][i][:][:]
r = self.x[m][ch][:][:]
s += np.square(r) * self.alpha
mid2 = np.power(mid, -self.beta)
return np.multiply(self.x, mid2), mid
def get_attrs(self):
attrs = {
'n': self.n,
'k': self.k,
'alpha': self.alpha,
'beta': self.beta
}
return attrs
def setUp(self):
self.op_type = "lrn"
self.N = 2
self.C = 3
self.H = 5
self.W = 5
self.n = 5
self.k = 2.0
self.alpha = 0.0001
self.beta = 0.75
self.x = self.get_input()
self.out, self.mid_out = self.get_out()
self.inputs = {'X': self.x}
self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
self.attrs = self.get_attrs()
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out', max_relative_error=0.01)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册