test_activation_op.py 7.5 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import unittest
import numpy as np
from op_test import OpTest


class TestExp(OpTest):
    def setUp(self):
        self.op_type = "exp"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.exp(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSigmoid(OpTest):
    def setUp(self):
        self.op_type = "sigmoid"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}

    def test_check_output(self):
        self.check_output()

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


class TestTanh(OpTest):
    def setUp(self):
        self.op_type = "tanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


K
Kavya Srinet 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class TestTanhShrink(OpTest):
    def setUp(self):
        self.op_type = "tanh_shrink"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [10, 17]).astype("float32")
        }
        self.outputs = {'Y': self.inputs['X'] - np.tanh(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.008)


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class TestSqrt(OpTest):
    def setUp(self):
        self.op_type = "sqrt"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.sqrt(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestAbs(OpTest):
    def setUp(self):
        self.op_type = "abs"
Q
qijun 已提交
84 85 86 87 88 89
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
        # Because we set delta = 0.005 in caculating numeric gradient,
        # if x is too small, such as 0.002, x_neg will be -0.003
        # x_pos will be 0.007, so the numeric gradient is unaccurate.
        # we should avoid this
        x[np.abs(x) < 0.005] = 0.02
90 91 92 93 94 95 96 97 98 99
        self.inputs = {'X': x}
        self.outputs = {'Y': np.abs(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


Q
qijun 已提交
100
class TestRelu(OpTest):
101
    def setUp(self):
Q
qijun 已提交
102 103 104 105 106 107
        self.op_type = "relu"
        x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
        # The same reason with TestAbs
        x[np.abs(x) < 0.005] = 0.02
        self.inputs = {'X': x}
        self.outputs = {'Y': np.maximum(self.inputs['X'], 0)}
108 109 110 111 112 113 114 115 116 117 118 119

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestBRelu(OpTest):
    def setUp(self):
        self.op_type = "brelu"
        x = np.random.uniform(-1, 1, [4, 4]).astype("float32")
Q
qijun 已提交
120
        t_min = 1
121
        t_max = 4
Q
qijun 已提交
122 123
        # The same with TestAbs
        x[np.abs(x - t_min) < 0.005] = t_min + 0.02
Q
qijun 已提交
124
        x[np.abs(x - t_max) < 0.005] = t_max + 0.02
Q
qijun 已提交
125 126

        self.inputs = {'X': x}
127 128 129 130 131 132 133 134 135 136 137 138 139
        self.attrs = {'t_min': t_min, 't_max': t_max}
        t = np.copy(x)
        t[t < t_min] = t_min
        t[t > t_max] = t_max
        self.outputs = {'Y': t}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


K
Kavya Srinet 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
class TestLeakyRelu(OpTest):
    def setUp(self):
        self.op_type = "leaky_relu"
        alpha = 0.02
        self.attrs = {'alpha': alpha}
        self.inputs = {'X': np.random.uniform(-3, 3, [4, 4]).astype("float32")}
        self.outputs = {
            'Y': np.maximum(self.inputs['X'], alpha * self.inputs['X'])
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
K
Kavya Srinet 已提交
154
        self.check_grad(['X'], 'Y', max_relative_error=0.007)
K
Kavya Srinet 已提交
155 156


157 158 159
class TestSoftRelu(OpTest):
    def setUp(self):
        self.op_type = "soft_relu"
Q
qijun 已提交
160 161 162 163 164
        x = np.random.uniform(-3, 3, [4, 4]).astype("float32")
        threshold = 2
        # The same reason with TestAbs
        x[np.abs(x - threshold) < 0.005] = threshold + 0.02
        x[np.abs(x + threshold) < 0.005] = -threshold + 0.02
165 166 167 168 169 170 171 172 173 174 175 176 177 178
        self.inputs = {'X': x}
        self.attrs = {'threshold': threshold}
        t = np.copy(x)
        t[t < -threshold] = -threshold
        t[t > threshold] = threshold
        self.outputs = {'Y': np.log((np.exp(t) + 1))}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


Q
qijun 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
class TestReciprocal(OpTest):
    def setUp(self):
        self.op_type = "reciprocal"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.outputs = {'Y': np.reciprocal(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.01)


class TestLog(OpTest):
    def setUp(self):
        self.op_type = "log"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.log(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


class TestSquare(OpTest):
    def setUp(self):
        self.op_type = "square"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {'Y': np.square(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
class TestPow(OpTest):
    def setUp(self):
        self.op_type = "pow"
        self.inputs = {'X': np.random.uniform(1, 2, [11, 17]).astype("float32")}
        self.attrs = {'factor': 3}
        self.outputs = {'Y': np.power(self.inputs['X'], 3)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.02)


class TestSTanh(OpTest):
    def setUp(self):
        self.op_type = "stanh"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
        }
        scale_a = 2.0 / 3.0
        scale_b = 1.7159
        self.attrs = {'scale_a': scale_a, 'scale_b': scale_b}
        self.outputs = {'Y': scale_b * np.tanh(self.inputs['X'] * scale_a)}

    def test_check_output(self):
        self.check_output()

Q
qijun 已提交
250 251 252 253
    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class TestSoftsign(OpTest):
    def setUp(self):
        self.op_type = "softsign"
        self.inputs = {
            'X': np.random.uniform(-1, 1, [11, 17]).astype("float32")
        }
        self.outputs = {
            'Y': np.divide(self.inputs['X'], 1 + np.abs(self.inputs['X']))
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Y', max_relative_error=0.007)


Q
qijun 已提交
271 272
if __name__ == "__main__":
    unittest.main()