test_fuse_optimizer_pass.py 6.5 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
Leo Chen 已提交
14

15 16
from simple_nets import simple_fc_net, fc_with_batchnorm, init_data, bow_net
from fake_reader import fake_imdb_reader
C
chengduo 已提交
17
from parallel_executor_test_base import TestParallelExecutorBase
18 19
from functools import partial
import paddle
C
chengduo 已提交
20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
import unittest
import os


26
class TestFuseOptimizationOps(TestParallelExecutorBase):
C
chengduo 已提交
27 28 29 30
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

31 32 33 34
    def _get_feed_dict(self):
        img, label = init_data()
        return {"image": img, "label": label}

C
chengduo 已提交
35 36 37
    def _compare_fused_optimizer_ops(self,
                                     model,
                                     use_cuda,
38 39
                                     feed_dict=None,
                                     get_data_from_feeder=None,
C
chengduo 已提交
40 41 42
                                     optimizer=fluid.optimizer.Adam):
        if use_cuda and not core.is_compiled_with_cuda():
            return
43

C
chengduo 已提交
44 45
        not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
            model,
C
chengduo 已提交
46
            feed_dict=feed_dict,
47
            get_data_from_feeder=get_data_from_feeder,
C
chengduo 已提交
48 49 50 51 52
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=False,
            optimizer=optimizer)
        fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
            model,
C
chengduo 已提交
53
            feed_dict=feed_dict,
54
            get_data_from_feeder=get_data_from_feeder,
C
chengduo 已提交
55 56 57 58 59 60 61 62 63
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=True,
            optimizer=optimizer)

        for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
        for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)

64 65 66 67 68 69 70 71 72 73 74 75
    def _decorate_compare_fused_optimizer_ops(self, model, use_cuda, optimizer):
        self._compare_fused_optimizer_ops(
            model,
            use_cuda,
            feed_dict=self._get_feed_dict(),
            optimizer=optimizer)


class TestFuseAdamOps(TestFuseOptimizationOps):
    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

C
chengduo 已提交
76
    def test_batchnorm_fc_with_fuse_op(self):
77 78 79 80
        self._decorate_compare_fused_optimizer_ops(
            fc_with_batchnorm, True, optimizer=self.optimizer)
        self._decorate_compare_fused_optimizer_ops(
            fc_with_batchnorm, False, optimizer=self.optimizer)
C
chengduo 已提交
81 82 83


class TestFuseSGDOps(TestFuseAdamOps):
84
    def optimizer(self, learning_rate=1e-3):
C
chengduo 已提交
85 86 87
        return fluid.optimizer.SGD(learning_rate=learning_rate)


C
chengduo 已提交
88
class TestFuseMomentumOps(TestFuseAdamOps):
89
    def optimizer(self, learning_rate=1e-3):
C
chengduo 已提交
90 91 92 93
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class TestSpareFuseAdamOps(TestFuseOptimizationOps):
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)
        cls.word_dict_len = 5147
        batch_size = 64
        reader = fake_imdb_reader(cls.word_dict_len, batch_size * 100)
        reader = paddle.batch(reader, batch_size=batch_size)()
        cls.train_data = next(reader)

    def _get_data_from_feeder(self):
        place = fluid.CPUPlace()
        feeder = fluid.DataFeeder(feed_list=["words", "label"], place=place)
        return feeder.feed(self.train_data)

    def _decorate_compare_fused_optimizer_ops(self, model, use_cuda, optimizer):
C
chengduo 已提交
110
        self._compare_fused_optimizer_ops(
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            model,
            use_cuda,
            get_data_from_feeder=self._get_data_from_feeder,
            optimizer=optimizer)

    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

    def test_simple_bow_net_with_fuse_op(self):
        model = partial(bow_net, dict_dim=self.word_dict_len, is_sparse=True)
        self._decorate_compare_fused_optimizer_ops(
            model, True, optimizer=self.optimizer)
        self._decorate_compare_fused_optimizer_ops(
            model, False, optimizer=self.optimizer)


class TestSpareFuseSGDOps(TestSpareFuseAdamOps):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.SGD(learning_rate=learning_rate)


class TestSpareFuseMomentumOps(TestSpareFuseAdamOps):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)
C
chengduo 已提交
136 137


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
class TestPassConflictBase(TestFuseAdamOps):
    def _compare_fused_optimizer_ops(self,
                                     model,
                                     use_cuda,
                                     feed_dict=None,
                                     get_data_from_feeder=None,
                                     optimizer=fluid.optimizer.Adam):
        if use_cuda and not core.is_compiled_with_cuda():
            return

        self.check_pass_conflict(
            model,
            feed_dict=feed_dict,
            get_data_from_feeder=get_data_from_feeder,
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=True,
            optimizer=optimizer,
            enable_sequential_execution=True)


class TestFuseAdamOpsPassConflict(TestPassConflictBase):
    def optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.Adam(learning_rate=learning_rate)

    def test_batchnorm_fc_with_fuse_op(self):
        self._decorate_compare_fused_optimizer_ops(
            fc_with_batchnorm, True, optimizer=self.optimizer)
        self._decorate_compare_fused_optimizer_ops(
            fc_with_batchnorm, False, optimizer=self.optimizer)


class TestFuseSGDOpsPassConflict(TestFuseAdamOpsPassConflict):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.SGD(learning_rate=learning_rate)


class TestFuseMomentumOpsPassConflict(TestFuseAdamOpsPassConflict):
    def optimizer(self, learning_rate=1e-3):
        return fluid.optimizer.Momentum(
            learning_rate=learning_rate, momentum=0.1)


C
chengduo 已提交
180 181
if __name__ == '__main__':
    unittest.main()