test_fuse_optimizer_pass.py 3.3 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from simple_nets import simple_fc_net, fc_with_batchnorm, init_data
C
chengduo 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
from parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid
import paddle.fluid.core as core
import unittest
import os


class TestFuseAdamOps(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

    def _compare_fused_optimizer_ops(self,
                                     model,
                                     use_cuda,
                                     optimizer=fluid.optimizer.Adam):
        if use_cuda and not core.is_compiled_with_cuda():
            return
33
        img, label = init_data()
C
chengduo 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
            model,
            feed_dict={"image": img,
                       "label": label},
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=False,
            memory_opt=False,  # avoid the gradient's name changed in Python side.
            optimizer=optimizer)
        fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
            model,
            feed_dict={"image": img,
                       "label": label},
            use_cuda=use_cuda,
            fuse_all_optimizer_ops=True,
            memory_opt=False,  # avoid the gradient's name changed in Python side.
            optimizer=optimizer)

        for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
        for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
            self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)

    def test_simple_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(simple_fc_net, True)
        self._compare_fused_optimizer_ops(simple_fc_net, False)

    def test_batchnorm_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(fc_with_batchnorm, True)
62
        self._compare_fused_optimizer_ops(fc_with_batchnorm, False)
C
chengduo 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


class TestFuseSGDOps(TestFuseAdamOps):
    def sgd_optimizer(self, learning_rate=1e-4):
        return fluid.optimizer.SGD(learning_rate=learning_rate)

    def test_simple_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(
            simple_fc_net, True, optimizer=self.sgd_optimizer)
        self._compare_fused_optimizer_ops(
            simple_fc_net, False, optimizer=self.sgd_optimizer)

    def test_batchnorm_fc_with_fuse_op(self):
        self._compare_fused_optimizer_ops(
            fc_with_batchnorm, True, optimizer=self.sgd_optimizer)
        self._compare_fused_optimizer_ops(
            fc_with_batchnorm, False, optimizer=self.sgd_optimizer)


if __name__ == '__main__':
    unittest.main()