analysis_predictor.cc 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/memory/memcpy.h"
38
#include "paddle/fluid/platform/cpu_helper.h"
39
#include "paddle/fluid/platform/device_context.h"
40
#include "paddle/fluid/platform/gpu_info.h"
41
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
42 43
#include "paddle/fluid/platform/profiler.h"

44 45 46 47
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
52 53
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
54
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
55 56
#endif

57 58
namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
  } else {
#ifdef PADDLE_WITH_CUDA
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
111
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
129
bool AnalysisPredictor::Init(
130 131
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
132
  VLOG(3) << "Predictor::init()";
133 134
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
135 136
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
137
    platform::EnableProfiler(tracking_device);
138 139 140
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
141 142
  }

143
  // no matter with or without MKLDNN
L
luotao1 已提交
144
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
145

146 147 148 149 150 151 152 153 154 155 156 157 158
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
159
  }
160 161 162 163 164 165 166 167 168

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
169
  if (parent_scope) {
170 171 172
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        "Both program and parent_scope should be set in Clone mode.");
Y
Yan Chunwei 已提交
173
    scope_ = parent_scope;
174
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
175
  } else {
176
    paddle::framework::InitDevices(false);
Y
Yan Chunwei 已提交
177
    scope_.reset(new paddle::framework::Scope());
178
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
179
  }
180 181 182 183 184
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
185 186
  if (!program) {
    if (!LoadProgramDesc()) return false;
187 188 189 190 191 192 193
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
194 195
    if (!CheckOperatorCompatible()) {
      LOG(WARNING) << "WARNING: Results may be DIFF! "
196 197
                      "Please use the corresponding version of the model and "
                      "prediction library, and do not use the develop branch.";
198
    }
199 200
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

201 202 203 204
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
205
  } else {
206 207
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
208 209
    inference_program_ = program;
  }
M
Michal Gallus 已提交
210

211 212 213 214 215
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
216
  if (config_.use_gpu()) {
217
    status_use_gpu_ = true;
218 219 220 221 222 223 224 225 226 227
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
#ifdef PADDLE_WITH_CUDA
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
228 229 230 231 232 233 234 235
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
236
                     config_.use_feed_fetch_ops_);
237

238
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
Y
Yan Chunwei 已提交
239

240 241 242
  return true;
}

243 244 245
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id="
246
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
247 248 249
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
250 251 252 253
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
254 255 256 257 258 259 260 261 262
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
    for (size_t i = 0; i < inputs.size(); ++i) {
      for (size_t j = 0; j < inputs[i].shape.size(); ++j) {
        ss << inputs[i].shape[j] << "-";
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
263
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
264 265 266 267 268 269 270 271
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
272 273 274 275 276 277 278 279
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
280 281 282 283
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
284 285 286 287
  }
#endif
}

288 289 290
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
291
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
292 293 294
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
295
  VLOG(3) << "Predictor::predict";
296 297 298 299
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
300
  PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr.");
301 302
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
303
    return false;
304
  }
M
Michal Gallus 已提交
305

306 307 308
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
309

310 311 312 313
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
314
  }
Y
Yan Chunwei 已提交
315

M
minqiyang 已提交
316
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
317

Y
Yan Chunwei 已提交
318 319 320 321 322
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
323 324 325
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
326
  tensor_array_batch_cleaner_.ResetNoTensorVars();
327 328 329 330

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
331 332
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
333
#endif
334
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
335 336 337 338
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
339
#endif
340 341
  return true;
}
342

343 344
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
345
  VLOG(3) << "Predictor::set_feed";
346 347 348 349 350 351 352 353 354 355
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
356 357
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
358 359 360
      return false;
    }
    int idx = -1;
361
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
362 363
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
364 365
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
366 367
      }
      idx = feed_names_[name];
368
    } else {
369
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
370
    }
371
    framework::SetFeedVariable(scope, *input, "feed", idx);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
398
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
399 400
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
401
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
402
    PADDLE_ENFORCE((size_t)idx == i);
403
    framework::FetchType &fetch_var =
404
        framework::GetFetchVariable(*scope, "fetch", idx);
405
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
406 407
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
408
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
409
    if (type == framework::proto::VarType::FP32) {
410 411
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
412
    } else if (type == framework::proto::VarType::INT64) {
413 414
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
415 416 417
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
418
    } else {
419
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
420 421
    }
  }
Y
Yan Chunwei 已提交
422 423
  return true;
}
424

425
void AnalysisPredictor::PrepareArgument() {
426
  argument_.SetUseGPU(config_.use_gpu());
427
  argument_.SetUseFcPadding(config_.use_fc_padding());
428
  argument_.SetGPUDeviceId(config_.gpu_device_id());
429
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
430
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
431
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
432
  // Analyze inference_program
433
  argument_.SetPredictorID(predictor_id_);
434
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
435 436
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
437 438
  } else {
    PADDLE_ENFORCE(
439
        !config_.params_file().empty(),
T
Tao Luo 已提交
440
        "Either model_dir or (param_file, prog_file) should be set.");
441
    PADDLE_ENFORCE(!config_.prog_file().empty());
N
nhzlx 已提交
442
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
443

444 445
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
446
  }
447

448
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
449
    LOG(INFO) << "TensorRT subgraph engine is enabled";
450 451 452
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
453
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
454
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
455
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
456
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
457 458 459
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
460
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
461
  }
462

石晓伟 已提交
463 464 465 466
  if (config_.lite_engine_enabled()) {
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
467 468 469
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
石晓伟 已提交
470 471 472
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

473
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
474
    LOG(INFO) << "MKLDNN is enabled";
475 476 477
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

478 479 480 481 482 483 484 485 486 487
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
#endif

488
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
489 490 491 492
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
493
  argument_.SetDisableLogs(config_.glog_info_disabled());
494
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
495
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
496
  argument_.SetScopeNotOwned(scope_.get());
497 498 499 500 501
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
502 503 504 505 506
  Analyzer().Run(&argument_);

  PADDLE_ENFORCE(argument_.scope_valid());
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
507
  inference_program_.reset(
508
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
509 510 511 512
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
513
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
514
}
515 516

template <>
517 518
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
519 520
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
521 522 523 524
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
525
  VLOG(3) << "create AnalysisConfig";
526 527
  PADDLE_ENFORCE(config.is_valid(),
                 "Note: Each config can only be used for one predictor.");
528

529
  if (config.use_gpu()) {
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
554

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        gflags.push_back("--allocator_strategy=naive_best_fit");
        process_level_allocator_enabled = true;
      }

      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
586 587 588 589 590 591
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
592 593 594 595
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
596 597
  // Each config can only be used for one predictor.
  config.SetInValid();
598 599 600 601 602 603 604
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
605 606
    return nullptr;
  }
607

G
Gabor Buella 已提交
608
  return predictor;
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

623
void AnalysisPredictor::PrepareFeedFetch() {
624 625
  PADDLE_ENFORCE_NOT_NULL(sub_scope_);
  CreateFeedFetchVar(sub_scope_);
626 627
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
628
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
629 630 631 632 633
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
634
      idx2feeds_[idx] = op->Output("Out")[0];
635
    } else if (op->Type() == "fetch") {
636
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
637 638
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
639
      }
Y
Yan Chunwei 已提交
640
      fetches_[idx] = op;
N
nhzlx 已提交
641
      idx2fetches_[idx] = op->Input("X")[0];
642 643 644 645
    }
  }
}

646 647 648
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
  PADDLE_ENFORCE_NOT_NULL(scope);
  auto *var = scope->Var("feed");
649
  var->GetMutable<framework::FeedList>();
650
  var = scope->Var("fetch");
651
  var->GetMutable<framework::FetchList>();
652 653
}

N
nhzlx 已提交
654 655 656 657 658 659 660 661
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

662 663 664 665 666 667 668 669 670 671 672 673
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var, "input %s does not exist.", name);
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
674 675 676 677 678 679 680 681
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

682 683 684 685 686 687 688
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
689 690 691
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
692
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
693 694 695
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

696 697 698 699 700 701 702 703 704 705
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
  PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name);
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
706 707 708
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
709
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
710 711
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
712 713 714 715
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
716
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
717
  executor_->Run();
Y
Yan Chunwei 已提交
718
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
719
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
720
  tensor_array_batch_cleaner_.ResetTensorArray();
721 722 723 724

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
725
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
726 727 728 729 730
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
731 732 733 734 735
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
736
  std::string filename;
737 738 739
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
740 741 742
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
743
    filename = config_.prog_file();
744
  } else {
745
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
746 747 748 749
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
750
    LOG(ERROR) << string::Sprintf(
751 752
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
753 754
    return false;
  }
755 756 757

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
758
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
759 760 761
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
T
Tao Luo 已提交
762 763
    PADDLE_ENFORCE(static_cast<bool>(fin.is_open()), "Cannot open file %s",
                   filename);
T
Tao Luo 已提交
764 765 766 767 768 769 770 771
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
772
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
773
  }
774 775 776 777 778 779 780
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          "The inference program should be loaded first.");
T
Tao Luo 已提交
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

802
      if (!config_.params_file().empty()) {
803 804 805 806 807 808
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
809
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
810 811 812 813 814
        op->CheckAttrs();
      }
    }
  }

815
  if (!config_.params_file().empty()) {
816 817 818 819 820 821
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
822
    op->SetAttr("file_path", {config_.params_file()});
823 824 825 826
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
827
  framework::NaiveExecutor e(place_);
828 829 830 831
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

832 833
  return true;
}
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}
853

N
nhzlx 已提交
854
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
855 856 857 858 859 860 861
bool AnalysisPredictor::SaveTrtCalibToDisk() {
  PADDLE_ENFORCE(config_.tensorrt_engine_enabled(),
                 "This func can be invoked only in trt mode");
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
862
          BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
863
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
864 865 866 867
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
868 869
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
870
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
871
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
872 873
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
874 875 876
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
877

N
nhzlx 已提交
878
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
879 880 881
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
882

N
nhzlx 已提交
883 884 885 886 887
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
888
      std::string calibration_table_data_path =
N
nhzlx 已提交
889 890 891 892
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
893 894 895 896 897

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
898 899 900 901
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
902
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
903 904
  return true;
}
N
nhzlx 已提交
905
#endif
N
nhzlx 已提交
906

907
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
908
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
909
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
910 911
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
912 913
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
914
#endif
915
  if (config_.with_profile_) {
916 917 918 919 920 921
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
922

923 924 925 926 927 928
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
929 930
}

931
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
932
  std::lock_guard<std::mutex> lk(clone_mutex_);
933 934 935 936 937
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

938
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
939 940 941
  return inference_program_->Proto()->SerializeAsString();
}

942 943
bool AnalysisPredictor::CheckOperatorCompatible() {
  if (!inference_program_) {
944 945 946
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Inference program version check failed because the program does not "
        "exist."));
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    return false;
  }
  bool res = true;
  op_compatible_map_.ReadFromProto(*inference_program_->OpCompatibleMap());
  const auto &version = framework::DumpVersion(framework::kCurProgramVersion);
  LOG(INFO) << "MODEL VERSION: "
            << framework::DumpVersion(inference_program_->Version());
  LOG(INFO) << "PREDICTOR VERSION: " << version;
  std::set<std::string> op_types;
  for (size_t i = 0; i < inference_program_->Size(); ++i) {
    const auto &block = inference_program_->Block(i);
    for (const auto *op : block.AllOps()) {
      op_types.insert(op->Type());
    }
  }
  for (const auto type : op_types) {
    auto compatible_type =
        op_compatible_map_.IsRequireMiniVersion(type, version);
    if (compatible_type != framework::OpCompatibleType::compatible) {
966 967 968 969
      if (!framework::kCurProgramVersion) {
        LOG(WARNING) << " - Version incompatible ("
                     << static_cast<int>(compatible_type) << ") " << type;
      }
970 971 972 973 974 975
      res = false;
    }
  }
  return res;
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1015
template <>
1016 1017 1018 1019
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1020 1021
}

1022
}  // namespace paddle
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
Z
zlsh80826 已提交
1033
USE_TRT_CONVERTER(matmul);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1045 1046
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1047
USE_TRT_CONVERTER(split);
1048 1049
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1050
USE_TRT_CONVERTER(leaky_relu);
1051 1052
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1053
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1054 1055 1056
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1057 1058
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1059
USE_TRT_CONVERTER(slice);
1060
USE_TRT_CONVERTER(scale);
R
ReeseWang 已提交
1061
USE_TRT_CONVERTER(stack);
1062
#endif
W
Wilber 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

namespace paddle_infer {

void Tensor::Reshape(const std::vector<int> &shape) { tensor_->Reshape(shape); }

std::vector<int> Tensor::shape() const { return tensor_->shape(); }

void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
  return tensor_->SetLoD(x);
}

std::vector<std::vector<size_t>> Tensor::lod() const { return tensor_->lod(); }

const std::string &Tensor::name() const { return tensor_->name(); }

DataType Tensor::type() const { return tensor_->type(); }

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetInputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetOutputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer