cross_entropy_op.cc 3.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/cross_entropy_op.h"

namespace paddle {
namespace operators {

20 21
using framework::LoDTensor;

22
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
D
dongzhihong 已提交
27
  void InferShape(const framework::InferShapeContext &ctx) const override {
28 29 30 31 32 33 34
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
                            "Input(X) of CrossEntropyOp must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
                            "Input(Label) of CrossEntropyOp must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
                            "Output(Y) of CrossEntropyOp must not be null.");

35 36
    auto *x = ctx.Input<Tensor>("X");
    auto *label = ctx.Input<Tensor>("Label");
Y
Yu Yang 已提交
37

38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(x->dims().size(), 2, "X's rank must be 2.");
    PADDLE_ASSERT(label->dims().size() == 1 || label->dims().size() == 2);
    if (label->dims().size() == 2) {
      // soft cross entropy
      PADDLE_ENFORCE_EQ(x->dims(), label->dims());
    } else {
      // normal cross entropy
      PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0]);
    }
47
    ctx.Output<LoDTensor>("Y")->Resize({x->dims()[0], 1});
Q
Qiao Longfei 已提交
48 49 50
  }
};

51
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
52 53 54
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yan Chunwei 已提交
55
 protected:
D
dongzhihong 已提交
56
  void InferShape(const framework::InferShapeContext &ctx) const override {
57
    auto dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
58
    auto x = ctx.Input<Tensor>("X");
Y
Yan Chunwei 已提交
59

60
    dx->Resize(x->dims());
Y
Yan Chunwei 已提交
61 62 63
  }
};

64
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
65
 public:
66 67
  CrossEntropyOpMaker(framework::OpProto *proto,
                      framework::OpAttrChecker *op_checker)
68
      : OpProtoAndCheckerMaker(proto, op_checker) {
69 70 71
    AddInput("X", "The first input of CrossEntropyOp");
    AddInput("Label", "The second input of CrossEntropyOp");
    AddOutput("Y", "The output of CrossEntropyOp");
Q
Qiao Longfei 已提交
72
    AddComment(R"DOC(
73
CrossEntropy Operator.
Q
Qiao Longfei 已提交
74

75 76 77
The second input (Label tensor) supports two kinds of shapes:
1) Rank(Label) = 1, Label[i] indicates the class index for sample i:
                Y[i] = -log(X[i, Label[i]])
Q
Qiao Longfei 已提交
78

79 80 81 82 83 84
2) Rank(Label) = 2, Label[i, j] indicates the soft label of class j
   for sample i:
                Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
   Please make sure that in this case the summuation of each row of Label
   equals one. If each row of Label has only one non-zero element (equals 1),
   it degenerates to a standard one-hot representation.
Q
Qiao Longfei 已提交
85 86 87 88 89 90
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
91
namespace ops = paddle::operators;
92 93 94 95 96
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
            cross_entropy_grad, ops::CrossEntropyGradientOp);
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>);
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpKernel<float>);