custom_operator.cc 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35 36 37
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
38 39 40
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
41
#include "paddle/utils/any.h"
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

64
inline static bool IsDuplicableVar(const std::string& var_name) {
65 66 67 68
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

69 70
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
71
  std::string suffix = kGradVarSuffix;
72 73 74 75 76 77 78 79
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
80 81
}

82 83 84 85 86 87 88 89 90 91 92
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

93 94
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
95 96 97
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

98
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
99 100 101 102 103 104 105 106 107 108 109 110
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

111
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
112 113 114 115

  return rlt;
}

116 117 118 119 120 121 122 123
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
124 125
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
126
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
127 128
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
129
  for (auto& in_name : inputs) {
130
    VLOG(3) << "Custom Operator: input name - " << in_name;
131 132 133 134 135 136
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
137
      std::vector<paddle::experimental::Tensor> custom_vec_in;
138 139 140 141 142 143 144 145 146 147 148
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
149
        paddle::experimental::Tensor custom_t;
150
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
151 152
        custom_vec_in.emplace_back(custom_t);
      }
153
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
154 155 156 157 158 159 160
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
161
      paddle::experimental::Tensor custom_in;
162
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
163
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
164
    }
165 166
  }

167 168 169 170 171
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
172
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
173
    } else if (attr_type_str == "int") {
174
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
175
    } else if (attr_type_str == "float") {
176
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
177
    } else if (attr_type_str == "int64_t") {
178
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
179
    } else if (attr_type_str == "std::string") {
180
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
181
    } else if (attr_type_str == "std::vector<int>") {
182
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
183
    } else if (attr_type_str == "std::vector<float>") {
184
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
185
    } else if (attr_type_str == "std::vector<int64_t>") {
186
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
187
    } else if (attr_type_str == "std::vector<std::string>") {
188
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
189 190 191 192 193
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
194
          "`std::vector<float>`, `std::vector<int64_t>`, "
195 196 197 198 199
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
      PADDLE_ENFORCE_NE(vec_out.empty(), true,
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.", j,
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
227
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
228 229 230 231 232 233 234 235 236 237 238
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
      PADDLE_ENFORCE_NOT_NULL(
          out, platform::errors::NotFound("Output tensor (%s) is nullptr.",
                                          out_name));
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
239
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
240 241 242
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
        true_out_ptrs.size(), calc_outs->size(),
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
            true_out_ptrs.size(), calc_outs->size()));
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
260
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
261
      // assgin meta info
262
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
263 264 265
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
266 267
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
268 269 270
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
271
      }
272 273 274 275 276 277 278 279
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
280 281 282
  }
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
301
                       return phi::vectorize(ddim);
302 303 304 305 306
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
307
      input_shapes.emplace_back(phi::vectorize(ddim));
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
363
                       return phi::make_ddim(shape);
364 365 366
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
367
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
368 369 370 371
    }
  }
}

372 373 374 375 376 377 378 379 380
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
381
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
382 383 384 385 386 387 388 389 390 391 392 393 394
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
395
      const framework::ExecutionContext& ctx) const override {
396 397 398 399 400 401 402 403 404 405
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
406
      const OpKernelType& expected_kernel_type) const override {
407 408 409 410 411 412 413 414 415 416 417 418 419 420
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
421 422 423 424 425 426
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
427 428
    }
    for (auto& out_name : outputs_) {
429 430 431 432 433 434
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
435
    }
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
475
            "`std::vector<float>`, `std::vector<int64_t>`, "
476 477 478 479 480
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
509
      const std::vector<std::string>& outputs, bool is_double_grad)
510 511 512
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
513 514
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
515 516 517 518 519 520 521 522 523

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
524
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
525
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
541
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
542
      if (detail::IsDuplicableVar(out_name)) {
543 544 545
        grad_op->SetOutput(
            out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                                      /*drop_empty_grad=*/false));
546
      } else {
547 548
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(
                                         out_name, is_double_grad_)));
549
      }
550
    }
551
    grad_op->SetAttrMap(this->Attrs());
552 553 554 555 556 557
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
558
  bool is_double_grad_{false};
559 560 561 562 563 564 565 566 567 568 569 570 571
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
572
      const std::vector<std::string>& outputs, bool is_double_grad)
573 574 575 576
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
577 578
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
579 580 581 582 583 584 585 586 587 588 589 590 591 592

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
593
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
594
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
610
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
611 612
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
613
    }
614
    grad_op->SetAttrMap(this->Attrs());
615 616 617 618 619 620
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
621
  bool is_double_grad_{false};
622 623 624 625
};

//////////// Operator and Kernel Register //////////////

626 627 628
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
629 630
    const proto::VarType::Type type, const platform::Place& place) {
  OpKernelType key(type, place);
631
  VLOG(3) << "Custom Operator: op kernel key: " << key;
632
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
633 634
}

635 636 637 638 639 640
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
641
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
642 643 644 645 646
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
    op_kernel_func = [kernel_func, inputs, outputs,
                      attrs](const framework::ExecutionContext& ctx) {
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
668
                                  platform::CPUPlace());
669
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
670
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
671
                                  platform::CUDAPlace());
672
#endif
673 674
}

675 676
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
677 678 679 680 681 682
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
683 684

  if (OpInfoMap::Instance().Has(op_name)) {
685
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
686 687 688
    return;
  }

689 690 691 692 693 694 695
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

696 697
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
698
          << string::join_strings(op_inputs, ',');
699
  VLOG(3) << "Custom Operator: forward, op outputs: "
700
          << string::join_strings(op_outputs, ',');
701
  VLOG(3) << "Custom Operator: forward, op attrs: "
702
          << string::join_strings(op_attrs, ',');
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
725 726 727 728 729 730 731 732
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
733 734 735
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
736 737 738 739 740 741 742
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
743 744 745
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
746 747 748
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

749
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
750 751 752
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
753
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
754
                         infer_shape_func](InferShapeContext* ctx) {
755
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
756 757
    };
  }
758 759

  // Infer Dtype
760 761 762 763 764 765 766 767
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
768 769 770
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
771 772 773 774 775 776 777
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
778 779 780
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
781 782 783
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

784
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
785 786 787 788 789 790 791
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
792
      std::vector<std::vector<DataType>> vec_input_dtypes;
793

794
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
795
      for (auto& in_name : op_inputs) {
796 797 798 799
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
800
            vec_custom_dtype.emplace_back(
801
                paddle::framework::TransToPhiDataType(dtype));
802 803 804 805
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
806
          input_dtypes.emplace_back(
807
              paddle::framework::TransToPhiDataType(dtype));
808
        }
809
      }
810

811
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
812
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
813

814
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
815
      for (size_t i = 0; i < op_outputs.size(); ++i) {
816 817 818
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
819 820
            auto dtype =
                paddle::framework::TransToProtoVarType(output_dtypes[i]);
821 822 823
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
824 825 826
          ctx->SetOutputDataType(
              out_name,
              paddle::framework::TransToProtoVarType(output_dtypes[i]));
827
        }
828 829 830
      }
    };
  }
831 832

  // Kernel func
833 834
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs,
                         dso_handle);
835 836 837 838 839 840 841 842 843

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
844
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
845
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
846
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
847

848 849
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
850
            << string::join_strings(grad_op_inputs, ',');
851
    VLOG(3) << "Custom Operator: backward, op outputs: "
852 853
            << string::join_strings(grad_op_outputs, ',');

854 855
    bool is_double_grad = (i == 2);

856
    // GradOpDescMaker
857 858
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs,
                           is_double_grad](
859 860 861 862 863 864
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
865
          grad_op_inputs, grad_op_outputs, is_double_grad);
866 867 868 869 870
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
871
                                   grad_op_outputs, is_double_grad](
872 873 874 875
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
876
        const framework::AttributeMap& default_attrs,
877 878 879
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
880
          grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad);
881
      maker.SetDygraphDefaultAttrsMap(default_attrs);
882 883 884 885 886 887 888 889 890 891 892 893 894
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

895
    // Grad InferShape
896
    if (grad_infer_shape_fn == nullptr) {
897 898
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs,
                                is_double_grad](InferShapeContext* ctx) {
899 900 901 902 903 904 905 906 907 908
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
909
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
910 911
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
912 913
            ctx->ShareDim(fwd_name, out_name);
          } else {
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
932 933
          }
        }
934 935 936 937 938 939 940 941
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
942 943 944

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
945
                           grad_op_outputs, grad_op_attrs, dso_handle);
946 947 948 949 950 951 952 953 954 955 956

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
957
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
958
  auto& meta_info_map = op_meta_info_map.GetMap();
959
  VLOG(3) << "Custom Operator: size of op meta info map - "
960 961 962
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
963
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
964
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
965 966 967 968 969 970
  }
}

////////////////////// User APIs ///////////////////////

// load op api
971 972
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
973
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
974
  VLOG(3) << "load custom_op lib: " << dso_name;
975 976 977 978
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
979
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
980
  return op_meta_info_map.GetMap();
981 982 983 984
}

}  // namespace framework
}  // namespace paddle