custom_operator.cc 39.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35 36 37
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
38 39 40 41
#include "paddle/phi/api/all.h"
#include "paddle/phi/api/lib/ext_compat_utils.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/core/compat/convert_utils.h"
42
#include "paddle/utils/any.h"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
      func, platform::errors::NotFound(
                "Failed to load dynamic operator library, error message(%s).",
                errorno));
  return func;
}

65
inline static bool IsDuplicableVar(const std::string& var_name) {
66 67 68 69
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

70
inline static std::string NoGrad(const std::string& var_name) {
71 72 73 74
  std::string suffix = kGradVarSuffix;
  return var_name.substr(0, var_name.size() - kGradVarSuffixSize);
}

75 76 77 78 79 80 81 82 83 84 85
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

86 87
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
88 89 90
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

91
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
92 93 94 95 96 97 98 99 100 101 102 103
  auto split_pos = attr.find_first_of(":");
  PADDLE_ENFORCE_NE(split_pos, std::string::npos,
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

104
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
105 106 107 108

  return rlt;
}

109 110 111 112 113 114 115 116
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
static void RunKernelFunc(const framework::ExecutionContext& ctx,
                          const paddle::KernelFunc& func,
                          const std::vector<std::string>& inputs,
117 118
                          const std::vector<std::string>& outputs,
                          const std::vector<std::string>& attrs) {
119
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
120 121
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
122
  for (auto& in_name : inputs) {
123
    VLOG(3) << "Custom Operator: input name - " << in_name;
124 125 126 127 128 129
    if (detail::IsDuplicableVar(in_name)) {
      // return const std::vector<const Tensor*>
      auto vec_x = ctx.MultiInput<Tensor>(in_name);
      PADDLE_ENFORCE_NE(vec_x.empty(), true,
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
130
      std::vector<paddle::experimental::Tensor> custom_vec_in;
131 132 133 134 135 136 137 138 139 140 141
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
            x, platform::errors::NotFound(
                   "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                   i, in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
                              i, in_name));
142
        paddle::experimental::Tensor custom_t;
143
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
144 145
        custom_vec_in.emplace_back(custom_t);
      }
146
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
147 148 149 150 151 152 153
    } else {
      auto* x = ctx.Input<Tensor>(in_name);
      PADDLE_ENFORCE_NOT_NULL(x, platform::errors::NotFound(
                                     "Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(), true,
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
154
      paddle::experimental::Tensor custom_in;
155
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
156
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
157
    }
158 159
  }

160 161 162 163 164
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
165
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
166
    } else if (attr_type_str == "int") {
167
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
168
    } else if (attr_type_str == "float") {
169
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
170
    } else if (attr_type_str == "int64_t") {
171
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
172
    } else if (attr_type_str == "std::string") {
173
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
174
    } else if (attr_type_str == "std::vector<int>") {
175
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
176
    } else if (attr_type_str == "std::vector<float>") {
177
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
178
    } else if (attr_type_str == "std::vector<int64_t>") {
179
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
180
    } else if (attr_type_str == "std::vector<std::string>") {
181
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
182 183 184 185 186
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
187
          "`std::vector<float>`, `std::vector<int64_t>`, "
188 189 190 191 192
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
  std::vector<Tensor*> true_out_ptrs;
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
      auto vec_out = ctx.MultiOutput<Tensor>(out_name);
      PADDLE_ENFORCE_NE(vec_out.empty(), true,
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
      std::vector<paddle::experimental::Tensor> custom_vec_out;
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.", j,
                out_name));
        true_out_ptrs.emplace_back(out);
        paddle::experimental::Tensor custom_t;
        // here only can copy the output tensor into context
220
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
221 222 223 224 225 226 227 228 229 230 231
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
      auto* out = ctx.Output<Tensor>(out_name);
      PADDLE_ENFORCE_NOT_NULL(
          out, platform::errors::NotFound("Output tensor (%s) is nullptr.",
                                          out_name));
      true_out_ptrs.emplace_back(out);
      paddle::experimental::Tensor custom_out;
      // here only can copy the output tensor into context
232
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
233 234 235
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
    func(&kernel_ctx);

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
        true_out_ptrs.size(), calc_outs->size(),
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
            true_out_ptrs.size(), calc_outs->size()));
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
253
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
254
      // assgin meta info
255
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
256 257 258
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
259 260
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
261 262 263
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
264
      }
265 266 267 268 269 270 271 272
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
        "Custom operator raises an unknown exception in rumtime."));
273 274 275
  }
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
      std::transform(vec_ddim.begin(), vec_ddim.end(),
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
294
                       return phi::vectorize(ddim);
295 296 297 298 299
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
300
      input_shapes.emplace_back(phi::vectorize(ddim));
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
      std::transform(output_shapes.begin(), output_shapes.end(),
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
356
                       return phi::make_ddim(shape);
357 358 359
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
360
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
361 362 363 364
    }
  }
}

365 366 367 368 369 370 371 372 373
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
374
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
375 376 377 378 379 380 381 382 383 384 385 386 387
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
  framework::OpKernelType GetExpectedKernelType(
388
      const framework::ExecutionContext& ctx) const override {
389 390 391 392 393 394 395 396 397 398
    return framework::OpKernelType(proto::VarType::RAW, ctx.GetPlace());
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
399
      const OpKernelType& expected_kernel_type) const override {
400 401 402 403 404 405 406 407 408 409 410 411 412 413
    return OpKernelType(expected_kernel_type.data_type_,
                        expected_kernel_type.place_, tensor.layout());
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
414 415 416 417 418 419
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
420 421
    }
    for (auto& out_name : outputs_) {
422 423 424 425 426 427
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
428
    }
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
468
            "`std::vector<float>`, `std::vector<int64_t>`, "
469 470 471 472 473
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    AddComment(R"DOC(
Custom Operator.

According to the Tensor operation function implemented by the user 
independently of the framework, it is encapsulated into a framework 
operator to adapt to various execution scenarios such as dynamic graph, 
mode static graph mode, and inference mode.

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
      const OpDesc& fwd_op, const std::unordered_set<std::string>& no_grad_set,
      std::unordered_map<std::string, std::string>* grad_to_var,
      const std::vector<BlockDesc*>& grad_block, const std::string& name,
      const std::vector<std::string>& inputs,
502
      const std::vector<std::string>& outputs, bool is_double_grad)
503 504 505
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
506 507
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
508 509 510 511 512 513 514 515 516

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
517
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
518
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
534
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
535 536 537 538 539 540 541
      if (detail::IsDuplicableVar(out_name)) {
        grad_op->SetOutput(out_name,
                           this->InputGrad(detail::NoGrad(out_name),
                                           /*drop_empty_grad=*/false));
      } else {
        grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
      }
542
    }
543
    grad_op->SetAttrMap(this->Attrs());
544 545 546 547 548 549
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
550
  bool is_double_grad_{false};
551 552 553 554 555 556 557 558 559 560 561 562 563
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
      const std::string& name, const std::vector<std::string>& inputs,
564
      const std::vector<std::string>& outputs, bool is_double_grad)
565 566 567 568
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
569 570
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
571 572 573 574 575 576 577 578 579 580 581 582 583 584

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
585
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
586
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
602
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
603 604
      grad_op->SetOutput(out_name, this->InputGrad(detail::NoGrad(out_name)));
    }
605
    grad_op->SetAttrMap(this->Attrs());
606 607 608 609 610 611
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
612
  bool is_double_grad_{false};
613 614 615 616
};

//////////// Operator and Kernel Register //////////////

617 618 619 620
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
    const proto::VarType::Type type, const PlaceType& place) {
621
  OpKernelType key(type, experimental::ConvertExtPlaceToInnerPlace(place));
622
  VLOG(3) << "Custom Operator: op kernel key: " << key;
623
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
624 625
}

626 627 628 629 630 631
static void RegisterOperatorKernel(const std::string& name,
                                   const paddle::KernelFunc& kernel_func,
                                   const std::vector<std::string>& inputs,
                                   const std::vector<std::string>& outputs,
                                   const std::vector<std::string>& attrs,
                                   void* dso_handle) {
632
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
633 634 635 636 637
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
    op_kernel_func = [kernel_func, inputs, outputs,
                      attrs](const framework::ExecutionContext& ctx) {
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs);
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
                                  PlaceType::kCPU);
660
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
661 662
  RegisterOperatorKernelWithPlace(name, op_kernel_func, proto::VarType::RAW,
                                  PlaceType::kGPU);
663
#endif
664 665
}

666 667
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
668 669 670 671 672 673
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
674 675

  if (OpInfoMap::Instance().Has(op_name)) {
676
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
677 678 679
    return;
  }

680 681 682 683 684 685 686
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

687 688
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
689
          << string::join_strings(op_inputs, ',');
690
  VLOG(3) << "Custom Operator: forward, op outputs: "
691
          << string::join_strings(op_outputs, ',');
692
  VLOG(3) << "Custom Operator: forward, op attrs: "
693
          << string::join_strings(op_attrs, ',');
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715

  // Op
  info.creator_ = [](const std::string& op_name, const VariableNameMap& inputs,
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
      info.proto_->IsInitialized(), true,
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
          op_name, info.proto_->InitializationErrorString()));

  // InferShape
716 717 718 719 720 721 722 723
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
724 725 726
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
727 728 729 730 731 732 733
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
734 735 736
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
737 738 739
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

740
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
741 742 743
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
744
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs,
745
                         infer_shape_func](InferShapeContext* ctx) {
746
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
747 748
    };
  }
749 750

  // Infer Dtype
751 752 753 754 755 756 757 758
  if (infer_dtype_func == nullptr) {
    // use defalut InferDtype
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
          op_inputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
759 760 761
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
762 763 764 765 766 767 768
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
          op_outputs.size(), 1UL,
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
769 770 771
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
772 773 774
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

775
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
776 777 778 779 780 781 782
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
    info.infer_var_type_ = [op_inputs, op_outputs,
                            infer_dtype_func](InferVarTypeContext* ctx) {
      std::vector<DataType> input_dtypes;
783
      std::vector<std::vector<DataType>> vec_input_dtypes;
784

785
      VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
786
      for (auto& in_name : op_inputs) {
787 788 789 790
        if (detail::IsDuplicableVar(in_name)) {
          std::vector<DataType> vec_custom_dtype;
          for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
            auto dtype = ctx->GetInputDataType(in_name, i);
791
            vec_custom_dtype.emplace_back(
792
                paddle::framework::TransToPhiDataType(dtype));
793 794 795 796
          }
          vec_input_dtypes.emplace_back(vec_custom_dtype);
        } else {
          auto dtype = ctx->GetInputDataType(in_name);
797
          input_dtypes.emplace_back(
798
              paddle::framework::TransToPhiDataType(dtype));
799
        }
800
      }
801

802
      VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
803
      auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);
804

805
      VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
806
      for (size_t i = 0; i < op_outputs.size(); ++i) {
807 808 809
        auto out_name = op_outputs[i];
        if (detail::IsDuplicableVar(out_name)) {
          for (size_t j = 0; j < output_dtypes.size(); ++j) {
810 811
            auto dtype =
                paddle::framework::TransToProtoVarType(output_dtypes[i]);
812 813 814
            ctx->SetOutputDataType(out_name, dtype, j);
          }
        } else {
815 816 817
          ctx->SetOutputDataType(
              out_name,
              paddle::framework::TransToProtoVarType(output_dtypes[i]));
818
        }
819 820 821
      }
    };
  }
822 823

  // Kernel func
824 825
  RegisterOperatorKernel(op_name, kernel_fn, op_inputs, op_outputs, op_attrs,
                         dso_handle);
826 827 828 829 830 831 832 833 834

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
835
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
836
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
837
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
838

839 840
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
841
            << string::join_strings(grad_op_inputs, ',');
842
    VLOG(3) << "Custom Operator: backward, op outputs: "
843 844
            << string::join_strings(grad_op_outputs, ',');

845 846
    bool is_double_grad = (i == 2);

847
    // GradOpDescMaker
848 849
    info.grad_op_maker_ = [grad_op_name, grad_op_inputs, grad_op_outputs,
                           is_double_grad](
850 851 852 853 854 855
        const OpDesc& fwd_op,
        const std::unordered_set<std::string>& no_grad_set,
        std::unordered_map<std::string, std::string>* grad_to_var,
        const std::vector<BlockDesc*>& grad_block) {
      CustomGradOpMaker<paddle::framework::OpDesc> maker(
          fwd_op, no_grad_set, grad_to_var, grad_block, grad_op_name,
856
          grad_op_inputs, grad_op_outputs, is_double_grad);
857 858 859 860 861
      return maker();
    };

    // GradOpBaseMaker
    info.dygraph_grad_op_maker_ = [grad_op_name, grad_op_inputs,
862
                                   grad_op_outputs, is_double_grad](
863 864 865 866
        const std::string& type,
        const imperative::NameVarBaseMap& var_base_map_in,
        const imperative::NameVarBaseMap& var_base_map_out,
        const framework::AttributeMap& attrs,
867
        const framework::AttributeMap& default_attrs,
868 869 870
        const std::map<std::string, std::string>& inplace_map) {
      CustomGradOpMaker<paddle::imperative::OpBase> maker(
          type, var_base_map_in, var_base_map_out, attrs, inplace_map,
871
          grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad);
872
      maker.SetDygraphDefaultAttrsMap(default_attrs);
873 874 875 876 877 878 879 880 881 882 883 884 885
      return maker();
    };

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
    grad_info.creator_ = [](
        const std::string& type, const VariableNameMap& inputs,
        const VariableNameMap& outputs, const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };

886
    // Grad InferShape
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    if (grad_infer_shape_fn == nullptr) {
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs](InferShapeContext* ctx) {
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
          auto fwd_name = detail::NoGrad(out_name);
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
903 904
            ctx->ShareDim(fwd_name, out_name);
          } else {
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
                      "to "
                      "the output shape. Otherwise, Please set the forward "
                      "input "
                      "as the grad operator's input or  set the InferShapeFn "
                      "of custom grad operator by "
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
923 924
          }
        }
925 926 927 928 929 930 931 932
      };
    } else {
      grad_info.infer_shape_ = [grad_op_inputs, grad_op_outputs, grad_op_attrs,
                                grad_infer_shape_fn](InferShapeContext* ctx) {
        RunInferShapeFunc(ctx, grad_infer_shape_fn, grad_op_inputs,
                          grad_op_outputs, grad_op_attrs);
      };
    }
933 934 935

    // Kernel func
    RegisterOperatorKernel(grad_op_name, grad_kernel_fn, grad_op_inputs,
936
                           grad_op_outputs, grad_op_attrs, dso_handle);
937 938 939 940 941 942 943 944 945 946 947

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
948
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
949
  auto& meta_info_map = op_meta_info_map.GetMap();
950
  VLOG(3) << "Custom Operator: size of op meta info map - "
951 952 953
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
954
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
955
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
956 957 958 959 960 961
  }
}

////////////////////// User APIs ///////////////////////

// load op api
962 963
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
964
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
965
  VLOG(3) << "load custom_op lib: " << dso_name;
966 967 968 969
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
970
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
971
  return op_meta_info_map.GetMap();
972 973 974 975
}

}  // namespace framework
}  // namespace paddle