conv_cudnn_helper.h 23.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
20
#include <string>
Q
qingqing01 已提交
21
#include <vector>
22
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
23 24 25 26 27 28
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_desc.h"
namespace paddle {
namespace operators {

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

86 87 88 89 90 91 92 93
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
  int max_algos = 0;
#if CUDNN_VERSION_MIN(7, 0, 1)
  PADDLE_ENFORCE_CUDA_SUCCESS(
      platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
          cudnn_handle, &max_algos));
#endif
  return max_algos;
}

template <typename PerfType, typename AlgoType>
void ChooseAlgo(const std::vector<PerfType>& perf_results,
                size_t workspace_byte, AlgoType* algo) {
  VLOG(3) << "=========BwdFilterAlgo Perf result=========";
  for (const auto& result : perf_results) {
    auto math_type_str = "False";
    if (result.mathType == CUDNN_TENSOR_OP_MATH) {
      math_type_str = "True";
    }
    VLOG(3) << "    algo: " << result.algo << ", TensorCore: " << math_type_str
            << ", time: " << result.time << " ms"
            << ", wksp = " << result.memory << ", status = " << result.status;
  }

  for (size_t i = 0; i != perf_results.size(); ++i) {
    const auto& result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        (result.memory <= workspace_byte)) {
      if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
          (i != perf_results.size() - 1)) {
        const auto& next_result = perf_results[i + 1];
        if (next_result.status == CUDNN_STATUS_SUCCESS &&
            next_result.algo == result.algo &&
            next_result.memory == result.memory &&
            next_result.mathType != CUDNN_TENSOR_OP_MATH &&
            next_result.time < 1.01 * result.time) {
          // Skip over this result- it's not really a Tensor Core algo.
          // Because it is only 1% performance difference.
          // Prefer to choose the next equivalent non-Tensor Core algo.
          continue;
        }
      }
      *algo = result.algo;
      auto math_type_str = "0";
      if (result.mathType == CUDNN_TENSOR_OP_MATH) {
        math_type_str = "1";
      }
      VLOG(3) << "    choose algo: " << result.algo << ", TC: " << math_type_str
              << ", time: " << result.time << " ms"
              << ", wksp = " << result.memory << ", status = " << result.status;
      return;
    }
  }
}

149
using framework::ConvSearchCache;
Q
qingqing01 已提交
150 151 152 153 154 155 156

struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
157
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
158 159 160 161 162 163 164 165 166 167

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
168 169 170
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
171 172 173 174 175 176 177 178 179 180 181 182
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
183
                     bool deterministic,
Q
qingqing01 已提交
184 185
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
186
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
187 188
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
189
    size_t workspace_size = 0;
Q
qingqing01 已提交
190
    algo_t algo;
191 192 193 194

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
195 196 197
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
198 199
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
200 201 202
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
203 204 205 206
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

207
    if (!exhaustive && !deterministic) {
208 209 210 211
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
212 213 214 215 216
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
217 218 219 220
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
221
#if CUDNN_VERSION >= 8000
222
        workspace_size_limit = workspace_size;
223 224 225 226 227 228 229 230 231 232 233 234
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
235 236
      }
#else
237 238 239 240 241 242
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
243
#endif
Q
qingqing01 已提交
244
      VLOG(3) << "choose algo " << algo;
245 246
    } else if (deterministic) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
Q
qingqing01 已提交
247 248 249 250 251
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

252 253
      auto& temp = ctx.cuda_device_context();
      AlgorithmsCache<algo_t>& algo_cache =
254
          *(framework::ConvSearchCache::Instance().GetForward());
255

Q
qingqing01 已提交
256 257 258
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

259 260 261
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
262

Q
qingqing01 已提交
263
      algo = algo_cache.GetAlgorithm(
264 265
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
266 267 268 269
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
270
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
296 297 298 299
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
300 301 302 303 304 305 306 307 308 309 310
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
311
                     bool deterministic,
Q
qingqing01 已提交
312 313 314 315
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
316 317
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
318
    algo_t algo;
319 320 321 322

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
323 324 325
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
326 327
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
328 329 330
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
331 332 333 334
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
335
    if (!exhaustive && !deterministic) {
336 337 338 339 340
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
341
      PADDLE_ENFORCE_CUDA_SUCCESS(
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
#if CUDNN_VERSION >= 8000
        // There is no cudnnGetConvolutionBackwardDataAlgorithm in CUDNN 8
        // version.
        workspace_size_limit = workspace_size;
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
380 381
      }
#else
382 383 384 385 386 387
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
388
#endif
Q
qingqing01 已提交
389 390 391 392 393 394 395
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

396
      AlgorithmsCache<algo_t>& algo_cache =
397
          *(framework::ConvSearchCache::Instance().GetBackwardData());
398

Q
qingqing01 已提交
399 400 401
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

402 403 404
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
405

Q
qingqing01 已提交
406
      algo = algo_cache.GetAlgorithm(
407 408
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
409 410 411 412
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
413
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
442
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
443
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
444 445
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
446 447 448 449 450 451 452 453 454 455 456
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
457
                     bool deterministic,
Q
qingqing01 已提交
458 459 460
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
461 462 463 464 465 466
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
467 468 469
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
470 471
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
472 473 474
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
475 476 477
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif
Q
qingqing01 已提交
478 479

    algo_t algo;
480
    if (!exhaustive_search && !deterministic) {
481 482 483 484 485 486
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
487
      PADDLE_ENFORCE_CUDA_SUCCESS(
488 489 490 491 492 493 494
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
495
        workspace_size = workspace_size_limit;
496 497
      }
#else
498
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
499 500 501 502 503
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
504
#endif
Q
qingqing01 已提交
505 506 507 508 509 510
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
511
      AlgorithmsCache<algo_t>& algo_cache =
512
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
513 514 515 516

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

517 518 519
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
      if (dtype != CUDNN_DATA_HALF) {
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              int returned_algo_count;
              std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
              auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            args.handle, args.idesc.desc(), args.x->data<T>(),
                            args.odesc.desc(), args.o->data<T>(),
                            args.cdesc.desc(), args.wdesc.desc(),
                            const_cast<T*>(args.w->data<T>()),
                            kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                            perf_stat.data(), cudnn_workspace_ptr,
                            workspace_size_limit));
              };
              workspace_handle.RunFuncSync(cudnn_find_func,
                                           workspace_size_limit);

              VLOG(3)
                  << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return perf_stat[0].algo;
            });
      } else {
        auto max_algos = MaxBwdFilterAlgos(args.handle);
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              algo_t chosen_algo;
              std::vector<perf_t> perf_results(max_algos);
              int actual_algos = 0;
558
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
559
                  platform::dynload::
560 561
                      cudnnFindConvolutionBackwardFilterAlgorithm(
                          args.handle, args.idesc.desc(), args.odesc.desc(),
Q
qingqing01 已提交
562
                          args.cdesc.desc(), args.wdesc.desc(),
563 564 565 566 567 568 569 570
                          perf_results.size(), &actual_algos,
                          perf_results.data()));
              perf_results.resize(actual_algos);
              ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
                                         &chosen_algo);
              return chosen_algo;
            });
      }
Q
qingqing01 已提交
571 572 573 574 575 576 577
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
578
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
579 580 581 582 583 584 585 586 587
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle