conv_cudnn_helper.h 20.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
Q
qingqing01 已提交
20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_desc.h"
namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
  out_t.device(place) = in_t.slice(offsets, extents);
}

84 85 86 87 88 89 90 91
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

92
using framework::AlgorithmsCache;
Q
qingqing01 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
110 111
           const std::vector<int> p, const std::vector<int> d)
      : x(x), w(w), o(o), s(s), p(p), d(d) {}
Q
qingqing01 已提交
112 113 114 115 116 117 118 119 120 121 122 123
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
124
                     bool deterministic, int algo_cache_id,
Q
qingqing01 已提交
125 126
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
127
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
128 129
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
130
    size_t workspace_size = 0;
Q
qingqing01 已提交
131
    algo_t algo;
132 133 134 135

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
136 137 138
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
139 140
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
141 142 143
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
144 145 146 147
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
148
    if (!exhaustive) {
149 150 151 152
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
153 154 155 156 157
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
158 159 160 161 162 163 164 165 166 167 168
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
169 170 171 172 173 174
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
175 176
      }
#else
177 178 179 180 181 182
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
183
#endif
Q
qingqing01 已提交
184 185
      VLOG(3) << "choose algo " << algo;
    } else {
186 187
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
Q
qingqing01 已提交
188 189 190 191 192 193 194
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

195 196 197 198
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;
199

Q
qingqing01 已提交
200
      algo = algo_cache.GetAlgorithm(
201
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
Q
qingqing01 已提交
202 203 204 205
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
206
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
232 233 234 235
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
236 237 238 239 240 241 242 243 244 245 246
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
247
                     bool deterministic, int algo_cache_id,
Q
qingqing01 已提交
248 249 250 251
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
252 253
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
254
    algo_t algo;
255 256 257 258

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
259 260 261
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
262 263
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
264 265 266
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
267 268 269 270
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif

Q
qingqing01 已提交
271
    if (!exhaustive && !deterministic) {
272 273 274 275 276
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
277
      PADDLE_ENFORCE_CUDA_SUCCESS(
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
306
        PADDLE_ENFORCE_CUDA_SUCCESS(
307 308 309 310 311 312 313
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
314 315 316 317 318 319
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
320
#endif
Q
qingqing01 已提交
321 322 323
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
324 325
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
Q
qingqing01 已提交
326 327 328 329 330 331 332
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

333 334 335 336
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;
337

Q
qingqing01 已提交
338
      algo = algo_cache.GetAlgorithm(
339
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
Q
qingqing01 已提交
340 341 342 343
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
344
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
373
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
374
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
375 376
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
377 378 379 380 381 382 383 384 385 386 387
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
388
                     bool deterministic, int algo_cache_id,
Q
qingqing01 已提交
389 390 391 392
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    bool exhaustive = (exhaustive_search) & (dtype != CUDNN_DATA_HALF);
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
393 394 395 396 397 398
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
399 400 401
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
402 403
      VLOG(5) << "use cudnn_tensor_op_math";
    } else {
404 405 406
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_DEFAULT_MATH));
407 408 409
      VLOG(5) << "NOT use cudnn_tensor_op_math";
    }
#endif
Q
qingqing01 已提交
410 411 412

    algo_t algo;
    if (!exhaustive && !deterministic) {
413 414 415 416 417 418
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
419
      PADDLE_ENFORCE_CUDA_SUCCESS(
420 421 422 423 424 425 426 427 428 429 430 431 432 433
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
      }
      if (!has_got_workspace_size) {
434
        PADDLE_ENFORCE_CUDA_SUCCESS(
435 436 437 438 439 440 441
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
      }
#else
442
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
443 444 445 446 447
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
448
#endif
Q
qingqing01 已提交
449 450 451
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
452 453
      AlgorithmsCache<algo_t>& algo_cache =
          ctx.GetKernelConfig<AlgorithmsCache<algo_t>>(algo_cache_id);
Q
qingqing01 已提交
454 455 456 457 458 459 460
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

461 462 463 464
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t algo_cache_id:"
               << algo_cache_id << ", x_dims:" << x_dims
               << ", w_dims:" << w_dims << ", args.s" << args.s << ", args.p"
               << args.p << ", args.d" << args.d;
465

Q
qingqing01 已提交
466
      algo = algo_cache.GetAlgorithm(
467
          x_dims, w_dims, args.s, args.p, args.d, 0, [&]() {
Q
qingqing01 已提交
468 469 470
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;
            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
471
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
                  platform::dynload::
                      cudnnFindConvolutionBackwardFilterAlgorithmEx(
                          args.handle, args.idesc.desc(), args.x->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.wdesc.desc(),
                          const_cast<T*>(args.w->data<T>()),
                          kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
499
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
500 501 502 503 504 505 506 507 508
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle