analyzer_lac_tester.cc 7.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
16

T
tensor-tang 已提交
17 18 19
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
20

T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
92

T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102 103 104
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108 109
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
110

T
tensor-tang 已提交
111 112
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
113
                       const int repeat, bool use_analysis = false) {
L
luotao1 已提交
114 115 116 117 118 119 120
  AnalysisConfig cfg;
  cfg.model_dir = model_path;
  cfg.use_gpu = false;
  cfg.device = 0;
  cfg.specify_input_name = true;
  cfg.enable_ir_optim = true;

121
  std::vector<PaddleTensor> input_slots, outputs_slots;
T
tensor-tang 已提交
122 123
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
124 125 126
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
    predictor =
T
tensor-tang 已提交
127
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
128 129
  } else {
    predictor =
L
luotao1 已提交
130
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
T
tensor-tang 已提交
131
  }
T
tensor-tang 已提交
132 133 134 135
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
L
luotao1 已提交
136 137 138 139 140 141
  if (FLAGS_test_all_data) {
    LOG(INFO) << "test all data";
    std::vector<std::vector<PaddleTensor>> input_slots_all;
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      input_slots_all.emplace_back(input_slots);
T
tensor-tang 已提交
142
    }
L
luotao1 已提交
143 144
    LOG(INFO) << "total number of samples: " << data.datasets.size();
    TestPrediction(cfg, input_slots_all, &outputs_slots, FLAGS_num_threads);
T
tensor-tang 已提交
145 146
    return;
  }
T
tensor-tang 已提交
147 148 149 150
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
L
luotao1 已提交
151
  PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
T
tensor-tang 已提交
152 153

  // check result
T
tensor-tang 已提交
154 155 156 157 158 159 160 161 162 163 164
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
165 166

  if (use_analysis) {
T
tensor-tang 已提交
167 168
    // run once for comparion as reference
    auto ref_predictor =
L
luotao1 已提交
169
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
170
    std::vector<PaddleTensor> ref_outputs_slots;
T
tensor-tang 已提交
171
    ref_predictor->Run(input_slots, &ref_outputs_slots);
L
luotao1 已提交
172
    CompareResult(ref_outputs_slots, outputs_slots);
T
tensor-tang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
191 192 193 194
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
    EXPECT_EQ(num_ops, 11);
T
tensor-tang 已提交
195
  }
T
tensor-tang 已提交
196
}
T
tensor-tang 已提交
197

T
tensor-tang 已提交
198 199 200
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
T
tensor-tang 已提交
201
                    FLAGS_repeat);
T
tensor-tang 已提交
202
}
T
tensor-tang 已提交
203 204 205 206

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
T
tensor-tang 已提交
207
                    FLAGS_repeat, true);
T
tensor-tang 已提交
208 209
}

T
tensor-tang 已提交
210 211 212
}  // namespace analysis
}  // namespace inference
}  // namespace paddle