analyzer_lac_tester.cc 7.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

L
luotao1 已提交
15
#include "paddle/fluid/inference/tests/api/tester_helper.h"
T
tensor-tang 已提交
16

T
tensor-tang 已提交
17 18 19
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
20

T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
92

T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102 103 104
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108 109
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
110

T
tensor-tang 已提交
111 112
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
113 114
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
L
luotao1 已提交
115 116 117 118 119 120 121
  AnalysisConfig cfg;
  cfg.model_dir = model_path;
  cfg.use_gpu = false;
  cfg.device = 0;
  cfg.specify_input_name = true;
  cfg.enable_ir_optim = true;

122
  std::vector<PaddleTensor> input_slots, outputs_slots;
T
tensor-tang 已提交
123 124
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
125 126 127
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
    predictor =
T
tensor-tang 已提交
128
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
129 130
  } else {
    predictor =
L
luotao1 已提交
131
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
T
tensor-tang 已提交
132
  }
T
tensor-tang 已提交
133 134 135 136
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
L
luotao1 已提交
137 138 139 140 141 142
  if (FLAGS_test_all_data) {
    LOG(INFO) << "test all data";
    std::vector<std::vector<PaddleTensor>> input_slots_all;
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      input_slots_all.emplace_back(input_slots);
T
tensor-tang 已提交
143
    }
L
luotao1 已提交
144 145
    LOG(INFO) << "total number of samples: " << data.datasets.size();
    TestPrediction(cfg, input_slots_all, &outputs_slots, FLAGS_num_threads);
T
tensor-tang 已提交
146 147
    return;
  }
T
tensor-tang 已提交
148 149 150 151
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
L
luotao1 已提交
152
  PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
T
tensor-tang 已提交
153 154

  // check result
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
166 167

  if (use_analysis) {
T
tensor-tang 已提交
168 169
    // run once for comparion as reference
    auto ref_predictor =
L
luotao1 已提交
170
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(cfg);
171
    std::vector<PaddleTensor> ref_outputs_slots;
T
tensor-tang 已提交
172
    ref_predictor->Run(input_slots, &ref_outputs_slots);
L
luotao1 已提交
173
    CompareResult(ref_outputs_slots, outputs_slots);
T
tensor-tang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
192 193 194 195
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
    EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
    EXPECT_EQ(num_ops, 11);
T
tensor-tang 已提交
196
  }
T
tensor-tang 已提交
197
}
T
tensor-tang 已提交
198

T
tensor-tang 已提交
199 200 201 202 203
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
204 205 206 207 208 209 210

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
211 212 213
}  // namespace analysis
}  // namespace inference
}  // namespace paddle